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11.1
Introduction

The almond [P. dulcis (Mill.) D.A. Webb; syn. P. amyg-
dalus Batsch] is a species of genus Prunus and sub-
genus Amygdalus (Rosaceae, subfamily Prunoideae)
that is commercially grown worldwide. The culti-
vated almond is thought to have originated in the
arid mountainous regions of Central Asia (Grasselly
1976a). Several wild species are also found growing in
these mountainous areas from Tian Shan mountain
in western China through the mountainous areas and
deserts of Kurdistan, Turkestan, Afghanistan and into
Iran and Iraq (Grasselly 1976b; Kester and Gradziel
1996). The Prunus species P. fenzliana (Fritsch) Lip-
sky, P. bucharica Korschinsky and P. kuramica Ko-
rschinsky (of the Section Euamygdalus) from these re-
gions are described as the wild species most closely re-
lated to almond (Grasselly 1976b; Browick and Zohary
1996), and may be the ancestral species of the mod-
ern cultivated almond (Kester et al. 1991). Ladizinsky
(1999),however, identifiedonlyP. fenzlianaas thewild
ancestor of almond. P. webbii (Spach) Vieh, which is
thought to have originated on the Balkan peninsula, is
also described as closely related to almond (Grasselly
1976a, b; Browick and Zohary 1996). The evolution
and distribution of almonds, both in cultivation and
in the associated semi wild state, has been divided
into three stages: Asiatic, Mediterranean, and Califor-
nian, corresponding to the geographical areas where
is grown (Fig. 1) (Grasselly 1976a; Kester et al. 1991;
Kester and Gradziel 1996).

The fruit of almond, as with other Prunus species,
is a drupe where the mature, stony endocarp together
with the seed forms a propagation unit comparable

to a botanical seed surrounded by its protective testa.
The almond is the earliest deciduous fruit and nut
tree to bloom in spring due to its low winter chill-
ing requirements and quick growth response to warm
temperatures. The almond growth cycle is adapted
to a Mediterranean type climate (Kester et al. 1991;
Kester andGradziel 1996).Almond is apredominantly
self-incompatible species. This self-incompatibility is
gametophytic and it is controlled by a single locus
with multiple codominant alleles (Socias i Company
and Felipe 1988; Dicenta and García 1993a). Since self-
compatible almond cultivars were reported in Puglia
region in Italy, self-compatibility has become one of
the main objectives for almond breeding programs
in Europe and the USA (Grasselly et al. 1981; Vargas
et al. 1984; Socias i Company and Felipe 1988; Dicenta
and García 1993a; Gradziel and Kester 1998). Culti-
vated almond is among the most polymorphic of all
cultivated fruit and nut species (Hauagge et al. 1987a;
Byrne 1990; Kester et al. 1991; Socias i Company and
Felipe 1992; Bartolozzi et al. 1998; Martínez-Gómez
et al. 2003a). Sixteen (2n = 2x = 16) small, but distin-
guishable (Corredor et al. 2004), chromosomes and
a small diploid genome of approximately 300 Mbp
(Baird et al. 1994) also characterize this species.

Horticulturally, almonds are classified as a nut
in which the edible seed (the kernel) is the commer-
cial product. Almond kernels are concentrated energy
sources because of their high lipid content. The oil
is primarily unsaturated, composes mostly oleic and
linoleic fatty acids (García-López et al. 1996). The ker-
nel also contains considerable proteins, minerals, and
some vitamins (Kester et al. 1991; Kester and Gradziel
1996). However, native almond species predominantly
have bitter kernels because of high levels of the gluco-
side amygdalin (Grasselly 1976b; Kester et al. 1991).
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Fig. 1. Map of world show-
ing the origin for almond
[Prunus dulcis (1)] and
different relative Prunus
species [P. bucharica (2),
P. fenzliana (3), P. davidiana
(4), P. persica (5), P. sco-
paria (6), P. webbii (7), and
P. argentea (8)], the dis-
semination routes for the
cultivated almond [→], and
the three main areas for
diversification and culti-
vation of almonds [Asiatic
(A), Mediterranean (B), and
Californian (C)]

The principal almond-producing area of the world is
the central valley of California with around 50% of the
world production. In 2003, worldwide annual almond
production exceeded 1679 thousand metric tons, in-
cluding 741 thousand metric tons in California. The
second major almond-producing area includes the
European countries bordering the Mediterranean Sea,
including Spain (the second leading country after the
United States with 197 thousand metric tons in 2003),
Italy (91 thousand metric tons) and Greece (40 thou-
sand metric tons). Finally, emergent areas exist in
central and southwestern Asia including Syria (139
thousand metric tons in 2003), Iran (109 thousand
metric tons) and Turkey (38 thousand metric tons)
(Fig. 2) (FAO 2004).

The threebasicobjectivesof almond improvement
are to increaseyield (self-compatibility, lateflowering,
flower density, and productivity), to improve qual-
ity (maturity date, kernel bitterness), and to decrease
production costs (pest and disease resistance, drought
resistance) (Socias i Company 1998). The efficiency
of breeding programs depends on the information
available on the transmission of those traits to be im-
proved. There has been a considerable progress in the
study of inheritance of agronomic traits in almond.
In this species most of the important agronomical
characteristics are quantitative. These quantitatively
inherited characters constitute the bulk of the vari-
ability selected during the breeding process (Kester
and Asay 1975; Grasselly and Crossa-Raynaud 1980;
Dicenta et al. 1993a, b; Socias i Company 1998). Late
flowering allows the avoidance of the spring frosts in
colder areas and has been an objective of early al-
mond breeding programs (Kester 1965; Vargas et al.

1984; Dicenta et al. 1993a; Socias i Company et al.
1999). Genetic studies have demonstrated a positive
response to selection for this trait (Kester et al. 1973;
Dicenta et al. 1993a). Flowering density and produc-
tivity are also two important traits, which have been
studied by Kester and Asay (1975), Grasselly and
Crossa-Raynaud (1980), Vargas et al. (1984) and Di-
centa et al. (1993a). Few studies have been performed
regarding the time of maturity (Kester and Asay 1975;
Dicenta et al. 1993b). On the other hand, other impor-
tant agronomic traits in almond seem to be controlled
by major genes, including kernel bitterness or self-
compatibility. There are many studies regarding the
transmission of the kernel traits (see Kester et al. 1977;
Vargas et al. 1984; Dicenta et al. 1993b). In addition,
kernel bitterness has been characterized as a mono-
genic trait, the bitter genotype being recessive (Hep-
pner 1923, 1926; Dicenta and García 1993b; Vargas
et al. 2001). Finally, self-compatibility was studied by
different authors who have determined its monogenic
nature with a multi-allelic S series, and identified the
Sf allele as the responsible for self-compatibility (So-
cias i Company and Felipe 1988; Dicenta and García
1993a; Ortega and Dicenta 2003). Self-compatibility
is expressed within the styles of flowers and results
in the successful growth to fertilization of self-pollen
tubes (Bošković et al. 1997, 2003).

The absence of extensive crossing barriers among
thedifferentPrunus species in the initialhybridization
and the subsequent backcrosses, demonstrates a di-
rect accessibility of this rich germplasm to almond
breeding (Browicz and Zohary 1996; Gradziel et al.
2001a; Martínez-Gómez et al. 2003b). The encourag-
ing performance of interspecific hybrids and back-
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Fig. 2. World almond
production according with
FAO (2004)

crosses to date, support continuing opportunities for
transferringuseful traits, includingself-compatibility,
resistance to important pests and diseases, improve-
ment of seed oil quality, tolerance to aberrant envi-
ronments, and modified tree architecture and bearing
habit (Gradziel et al. 2001a). The direct utilization of
these related almond species as a rootstock, mainly
under non-irrigated native conditions, has been re-
ported by several authors (Grasselly 1975; Denisov
1988). Interspecific crosses have also been used as
peach and plum rootstocks (Kester and Hansen 1966;
Felipe 1975). Related species have also been reported
as having potential in almond breeding to improve the
quality of kernels and as sources of self-compatibility
(Kester and Gradziel 1996; Gradziel and Kester 1998;
Gradziel et al. 2001a). However, a major impediment
to the full utilization of this rich germplasm is the te-
dious selection process emphasizing the need for ac-
curate molecular markers allowing efficient and rapid
selection tools (Martínez-Gómez et al. 2003b, c).

11.2
Variability Analysis
with Molecular Markers

Traditionally, the identification and characterization
of almond cultivars has been based on morphological
traits. However, such traits are not always available
for analysis, are affected by changing environmental
conditions and may only be visible in adult materi-
als and so requiring a long time for their analysis.
Molecular markers have offered a solution to many of

these problems allowing a fast, accurate, highly dis-
criminative and environmentally stable test that has
been used for variability analysis, pedigree determi-
nations or cultivar identification (Wünsch and Hor-
maza 2002; Martínez-Gómez et al. 2003b; Sánchez-
Pérez et al. 2004a). Moreover, some markers, such
as isozymes, restriction fragment length polymor-
phisms (RFLPs), simple sequence repeats (SSRs) and
other markers derived from the knowledge of specific
genome sequences; allow the comparison of variabil-
ity among homologous regions of the same or differ-
ent species.

Isozymes were the first molecular markers
used because of their environmental stability, their
codominant expression, and their good reproducibil-
ity (Arulsekar et al. 1986; Hauagge et al. 1987a, b;
Cerezo et al. 1989; Foolad et al. 1995; Vezvaei et al.
1995; Sathe et al. 2001). Isozyme studies have detected
high levels of variability in almond and allowed the
individual identification of most genotypes studied.
A comparative study of isozyme variability in Prunus
(Byrne 1990) showed that almond and Japanese
plum, both with a strong self-incompatibility system
were more variable than apricot and peach that have
different degrees of self-compatibility. Nevertheless,
their utilization is limited by the small number of
loci that can be analyzed with conventional enzyme
staining methods, as well as a low variation at most
loci. On the other hand, RFLPs are codominant and
can detect a virtually unlimited number of markers,
thus providing an efficient method for discovering
linkages between markers and for constructing
genetic maps. RFLPs also proved to be useful for vari-
ability analysis and cultivar identification in almond
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(Viruel 1995). However, RFLP analysis has important
limitations: it is laborious and time-consuming and
it often involves the use of radioisotopes. The recent
utilization of PCR-based markers has increased the
opportunities for mapping and tagging a wide range
of traits. RAPDs, based on the PCR amplification of
random locations in the genome, typically use arbi-
trary primers. A single oligonucleotide is utilized for
this random amplification of genomic DNA. Unlike
RFLPs, RAPDs can be obtained with a simple method,
but have some disadvantages when compared to
isoenzymes and RFLPs: they are dominant markers
and have a variable degree of repeatability which
limit their utilization for cultivar identification and
map construction. RAPD techniques have been used
in almond for the study of germplasm variability
(Bartolozzi et al. 1998; Martins et al. 2003).

SSR (or microsatellite) markers, also based on the
PCR technique, are currently becoming the mark-
ers of choice for genetic fingerprinting studies for
a wide range of plants. Because of their high poly-
morphism, abundance, and codominant inheritance,
they are well suited for the assessment of genetic vari-
ability within crop species, and of the genetic rela-
tionships among closely related species (Gupta et al.
1996; Powell et al. 1996). In the case of Prunus, SSR
markers covering the almost whole genome have been
obtained in different species including peach, apri-
cot, Japanese plum and cherry almost (Cipriani et al.
1999; Downey and Iezzoni 2000; Sosinski et al. 2000;
Testolin et al. 2000; Cantini et al. 2001; Aranzana et al.
2002, 2003; Dirlewanger et al. 2002; Georgi et al. 2002;
Wang et al. 2002; Yamamoto et al. 2002; Clarke and To-
butt 2003; Decroocq et al. 2003; Schueler et al. 2003;
Hagen et al. 2004; Messina et al. 2004; Mnejja et al.
2004). Recently, the first set of almond SSRs has been
published (Testolin et al. 2004). They have been suc-
cessfully used for the molecular characterization and
identification of almond cultivars (Martínez-Gómez
et al. 2003a; Testolin et al. 2004) and related Prunus
species (Martínez-Gómez et al. 2003c). Electrophore-
sis in polyacrilamide gels with radioactive and silver
stainingwas thefirstmethodused in theanalysisof the
PCR amplified fragments of DNA obtained from the
SSR markers. Electrophoresis in Metaphor® agarose
gels was an alternative method to polyacrilamide gels
due to its easier application (Morgante et al. 2003).
More recently, new methods for PCR amplified DNA
have been developed including the utilization of auto-
matedsequencers.While theuseofMetaphor®agarose
gels appears less useful for genotype characterization

that the other two methods, this method may be the
most convenient in mapping of populations involv-
ing alleles separated more than 5 bp due to its lower
cost and easier routine application (R. Sánchez-Pérez
et al. 2006) (Fig. 3). The comparative analysis of the
variability of five Prunus species with 125 SSRs has
detected that the most polymorphic species was al-
mond, followed by Japanese plum, apricot, cherry
and peach (M. Mnejja and P. Arús, unpublished re-
sults). This is the same order of variability that was
found with isozymes by Byrne (1990), which confirms
almond as a species with a very high level of polymor-
phism.

11.3
Construction of Genetic
Linkage Maps

Linkage analysis was first performed in almond us-
ing isozyme genes (Arús et al. 1994a; Vezvaei et al.
1995), but the low number of isozymes that can be an-
alyzed with conventional enzyme staining methods in
a given population precluded the use of these markers
for the construction of genetic maps. The develop-
ment of RFLPs at the beginning of the 1980s provided
a virtually unlimited source of high quality markers
located all over the genome, making map construc-
tion with markers a feasible endeavor for most animal
and plant species. The first map for almond was con-
structed by Viruel et al. (1995) based almost entirely
on these markers (120 RFLPs and 7 isoenzymes) for
the F1 progeny between ‘Ferragnès’ and ‘Tuono’ (the
F×T map). This map detected the eight expected link-
age groups and spanned approximately 400 cM. An-
other map constructed by Foolad et al (1995) with
an F2 population of the interspecific cross between
a peach selection (54P455) and the almond cultivar
‘Padre’ (P×5), had a similar marker composition (101
RFLPs and 6 isozymes). This map was longer than
that of Viruel et al. (1995), with a total length of about
800 cM.

As a result of a European project (see Arús et al.
1994b), a saturated linkage map of for Prunus was
obtained in an almond (cv. ‘Texas’, syn. ‘Mission’)
× peach (cv. ‘Earlygold’) F2 progeny (Joobeur et al.
1998) including 246 markers (235 RFLPs and 11
isozymes). All markers studied mapped in the eight
linkage groups found, with a total distance of 491 cM.
Given that this map (the T×E map), considered as the
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Fig. 3. Analysis of DNA
polymorphisms of SSR
markers in several almond
cultivars using polyacry-
lamide electrophoresis gels
(a), Metaphor® agarose elec-
trophoresis gels (b) and
automated capillary se-
quencers (c)

Prunus reference map, had many markers in common
(67) with the ‘Ferragnès’ × ‘Tuono’ (F×T) map, it was
possible to compare them, having the same distribu-
tion of makers among linkage groups and a complete
colinearity of markers within each linkage group. For
that reason the terminology for linkage groups coined
for the F×T almond map was adopted for the T×E ref-
erence Prunus map. The T×E map has been progres-
sively improved (Aranzana et al. 2003) with the addi-
tion of more markers of good quality, such as addi-
tionalRFLPsandsimple-sequence repeats (SSRs).The
current version (Dirlewanger et al. 2004a) includes
562 markers (361 RFLPs, 185 SSRs, 11 isozymes and 5
STSs), which cover a total distance of 519 cM with high
density (average density 0.92 cM/marker and largest
gap of 7 cM).

The development of markers that could be ob-
tained with simpler methods than RFLPs, such as
RAPDs and SSRs (particularly given the latter’s high
quality) fostered the improvement of other maps, and
more saturated versions were produced such as the
F×T map (Joobeur et al. 2000) with 174 markers and
the P×5 [‘Padre’ (almond) × 54P455 (peach)] map
(Bliss et al. 2002) with 161 markers including six mor-
phological genes and eight resistance-gene analog se-
quences.

Two more maps were constructed after T×E and
used the information of this map to elaborate frame-
work maps with a low number of markers selected
from it that covered the whole genome at distances
of 10–25 cM. The first of these maps was obtained
in the F1 progeny of the cross between two almond
cultivars ‘Felisia’ (syn. D-3-5) and ‘Bertina’ which
allowed a study of the map position of genes in-
volved in self-incompatibility (Ballester et al. 1998,
2001), shell hardness (Arús et al. 1999) and bloom-
ing time (Ballester et al. 2001). The second map was
based on an F2 progeny between ‘Garfi’ almond and
‘Nemared’ peach (Jáuregui et al. 2001), which located

genes involved in nematode resistance, and flower
color (Jáuregui 1998).

The similar order of molecular markers observed
in different Prunus maps when compared to the
Prunus reference map, suggests a high level of synteny
within the genus (Aranzana et al. 2003; Dirlewanger
et al. 2004a, b; Lambert et al. 2004). This homology
among the genomes of Prunus species is in agreement
with the low level of breeding barriers to interspe-
cific gene introgression and supports the opportu-
nity for successful gene transfer between closely re-
lated species (Gradziel et al. 2001a; Martínez-Gómez
et al. 2003b). In addition, the synteny among Prunus
genomes offers important opportunities to transfer
and compare genetic information from linkage maps
generated in different species of this genus.

The Prunus reference map has been compared
with the Arabidopsis sequence, finding 23 syntenic
blocks between them, which covered 23% of the
Prunus map distance and 16% of the Arabidopsis
genome (Dominguez et al. 2003). Microsynteny stud-
ies have found also a fractional conservation between
these two distant taxons (Georgi et al. 2003) and in-
dicate that the sequence of Arabidopsis can be em-
ployed to a limited extent for gene or marker search
in Prunus.

11.4
Major Gene and QTL Mapping,
and Gene Cloning

The usual approach for the analysis of marker-trait
association is the use of mapping populations segre-
gating for the agronomic characters of interest. The
analysis of cosegregation among markers and char-
acters allows establishment of the map position of
major genes and QTLs responsible for their expres-
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Fig. 4. Map of the ‘Texas’ (almond) × ‘Earlygold’ (peach) F2 population obtained only with the SSR markers of the map of
Dirlewanger et al. (2004a) and with the approximate location of flower color (B), nematode resistance (Mi), shell hardness (D),
anther color (Ag), blooming time (Lb), kernel taste (Sk), and self-incompatibility (S) genes
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Table 1. Markers associated to main agronomic traits in almond

Trait Symbol Linkage Populations Marker Reference
group

Flower color B G1 ‘Garfi’ (almond) × ‘Nemared’ (peach) RFLP Jáuregui 1998
Shell hardness D G2 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Arús et al. 1999
Nematode resistance Mi G2 ‘Garfi’ (almond) × ‘Nemared’ (peach) RFLP Jáuregui 1998
Nematode resistance Mi G2 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002
Anther color Ag G3 ‘Texas’ (almond) × ‘Earlygold’ (peach) RFLP Joobeur 1998
Blooming time Lb G4 ‘D.3.5’ (almond) × ‘Bertina’ (almond) RAPD Ballester et al. 2001
Kernel taste Sk G5 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002
Kernel taste Sk G5 ‘Texas’ (almond) × ‘Earlygold’ (peach) RFLP Joobeur 1998
Self-incompatibility S G6 ‘D.3.5’ (almond) × ‘Bertina’ (almond) RAPD Ballester et al. 2001
Self-compatibility S G6 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Ballester et al. 1998
Self-compatibility S G6 ‘Ferragnés’ (almond) × ‘Tuono’ (almond) RFLP Arús et al. 1999
Self-compatibility S G6 ‘Padre’ (almond) × ‘54P455’ (peach) RFLP Bliss et al. 2002

sion (Arús and Moreno-González 1993). Some of the
linkage maps developed in almond include markers
associated with several traits of horticultural value.
With the previously reported high level of synteny be-
tween the genome of Prunus crops, and the existence
of a reference map, a considerable number of genes
studied in different populations of almond have been
integrated in a single map. The approximate position
of these genes is providing in Fig. 4 and their descrip-
tion in Table 1. The important characters and QTLs
that are presently being mapped in almond include
flower color (B) in the linkage group 1 (G1) (Jáuregui
1998), nematode resistance (Mi) (G2) (Jáuregui 1998;
Bliss et al. 2002), shell hardness (D) (G2) (Arús et al.
1999), anther color (Ag) (G3) (Joobeur 1998), bloom-
ing time (Lb) (G4) (Ballester et al. 2001), kernel taste
(Sk) (G5) (Joobeur 1998; Bliss et al. 2002), and self-
incompatibility (S) (G6) (Ballester et al. 1998, 2001;
Arús et al. 1999; Bliss et al. 2002). Although in some
cases the location of these genes has been established
in low-density maps, their position can be further
defined by using the information provided by the
network of maps available for Prunus (Dirlewanger
et al. 2004a). Prunus genome synteny should also
facilitate the successful transfer of sets of markers
and coding sequence among species (Aranzana et al.
2003; Decrocq et al. 2003; Dirlewanger et al. 2004a, b).
Candidate gene approaches have also proven to be
useful for finding associations between genes in-
volved in relevant metabolic pathways and the major
genes or QTLs as have been reported in peach (Eti-
enne et al. 2002).

Bulked segregant analysis (BSA), where two
pooled DNA samples are formed from plant sources
that have similar genetic backgrounds but differ in
one particular trait, is another powerful approach
for the analysis of molecular marker-horticultural
trait association. A strategy combining different
markers with bulked segregant analysis was used
to identify markers linked to loci of specific fruit
characters in peach × almond crosses (Warburton
et al. 1996). In addition, Ballester et al. (2001) using
this methodology identified three RAPD markers
associated with self-incompatibility and a gene
conferring delayed blooming in almond.

Although gene cloning studies in almond are very
scarce, the first gene sequence reported in Prunus was
that of extensin obtained from almond developing
seeds (García-Mas et al. 1992), to which followed
some other genes abundantly expressed during seed
development (García-Mas et al. 1995, 1996). The
genes involved in the self-incompatibility trait have
also been characterized. Ushijima et al. (1998) cloned
the cDNAs encoding S-RNases from almond after
studying the primary structure and the sequence
diversity of the S-RNases in other related Rosaceae
species. These studies have been completed by other
research groups studying other S alleles (Channun-
tapipat et al. 2001; Ma and Oliveira 2001; Certal et al.
2002). In addition, Ushijima et al. (2001) cloned
and characterized the cDNAs encoding S-RNases in
an almond cultivar ‘Jeffries’ which is a somaclonal
mutant of ‘Nonpareil’ (Sc and Sd self-incompatibility
alleles) and has a dysfunctional S allele haplotype
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both in pistil and pollen. Results indicated that
at least two mutations had occurred to generate
this mutant, the deletion of the Sc allele haplotype
and the duplication of the Sd allele haplotype. On
the other hand, Suelves and Puigdomenech (1998)
identified and sequenced a gene highly expressed
in the floral organs of almond and coding for the
cyanogenic enzyme (R)-(+)-mandelonitrile lyase.
However, the study of the mRNA levels during seed
maturation and floral development in fruit and floral
samples indicated a lack of correlation between these
characteristics and levels of mandelonitrile lyase
mRNA and the level of kernel bitterness of almond
cultivars classified as homozygous or heterozygous
for the sweet trait or homozygous for the bitter
trait. In addition, Vezvaei et al. (2004) developed
a strategy for the discovery the glucosyltransferase
gene responsible for producing bitter kernel in
almond using degenerate primers based on consen-
sus regions of glucosyl-transferase genes for other
plants.

11.5
Marker-Assisted Breeding

Developing new cultivars is a long and tedious process
in almond, involving the generation of large popula-
tion of seedlings from which the best genotypes are
selected. Whereas the capacity of breeders to gener-
ate big populations from crosses is less limited, the
management, study and selection of these seedlings
remain the main limiting factors in the generation of
new releases (Kester et al. 1991; Kester and Gradziel
1996; Socias i Company 1998). Marker-assisted selec-
tion (MAS) is emerging as a very promising strat-
egy for increasing selection gains (Arús and Moreno-
González 1993; Luby and Shaw 2001). Knowledge
provided by advances in molecular genetics promise
faster and more efficient approaches to cultivar im-
provement. Early selection utilizing molecular mark-
ers allowsaccurate screeningof seedlings several years
before the mature plant traits can be evaluated in the
field, makes possible the accumulation of different
genes/QTLs for horticultural traits of interest, and
shortens the number of generations to recover the
desired genotype particularly after a cross with an
exotic genotype or wild species (Arús and Moreno-
González 1993; Baird et al. 1996; Dirlewanger et al.
2004a). Selection by molecular markers is particu-

larly useful in fruit, nut, and other tree crops with
a long juvenile period, when the expression of the
gene is recessive or the evaluation of the charac-
ter is difficult, as with resistance to biotic or abiotic
stresses (Luby and Shaw 2001; Scorza 2001; Testolin
2003). If sufficient mapping information is known,
MAS can dramatically shorten the number of gener-
ations required to “eliminate” the undesired genes
of the donor in backcrossing programs. Selection
of marker loci linked to major genes can be some-
times more efficient than direct selection for the tar-
get gene (Arús and Moreno-González 1993; Baird
et al. 1996).

A very promising application of MAS is the ma-
nipulation of self-incompatibility in almond. Almond
self-incompatibility alleles (S-alleles) were initially
identified in the field through controlled crosses with
a series of known S-genotypes (Kester and Gradziel
1996; Certal et al. 2002). Molecular methods have
been developed in two areas: identification of sty-
lar S-RNases by electrophoresis in vertical polyacril-
amide gels (Bošković et al. 1997, 2003), and the am-
plification of specific S-alleles using appropriately de-
signed primers for PCR and electrophoresis in hori-
zontal agarose gels (Tamura et al. 2000; Channuntapi-
pat et al. 2003; López et al. 2004). This latter technique
is being routinely used for the identification of cross-
incompatibility groupings for current almond cul-
tivars and for efficiently breeding self-compatibility
into new cultivars (Gradziel et al. 2001b; Ortega and
Dicenta 2003) allowing earlier and more accurate se-
lection of the most common self-incompatibility or
self-compatibility alleles. More recently, a multiplex-
PCR strategy has been developed for the unequiv-
ocal identification of self-incompatibility and self-
compatibility alleles. This multiplex PCR opens the
possibility to identify new S-alleles using different sets
of primers (Sánchez-Pérez et al. 2004b) (Fig. 5).

In a recent study to determine the genetic ba-
sis of mechanisms involved in almond drought tol-
erance, several genes that were strongly expressed in
response to dehydration of almond have been iden-
tified. A differential expression technique based on
cDNA-AFLP (amplified fragment length polymor-
phism derived technique for RNA fingerprinting)
has been used to identify transcripts that accumu-
lated in mature embryos and in in-vitro-cultured
plantlets subjected to desiccation or abscisic acid
treatment. This study showed that the levels of ex-
pression of the identified genes in leaves of young
trees of eight almond cultivars differing in drought
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Fig. 5. Agarose 1.5% gel
showing amplified S-alleles
(self-compatibility and self-
incompatibility) in 17 al-
mond cultivars and breeding
lines using PCR specific
primers AS1II (Tamura et al.
2000), CEBASf (Sánchez-
Pérez et al. 2004b) and
AmyC5R (Tamura et al.
2000)

tolerance provided valuable information for breed-
ing drought resistance in almond (Campalans et al.
2001).

11.6
Advanced Works and Future Scope

Apart from the molecular markers described (isoen-
zymes, RFLPs, RAPDs, and SSRs), other markers be-
ing used in the development of marker associated
traits in almond and other Prunus, are those based on
single point mutations and those obtained from either
cDNA sequences (expressed sequences tags, ESTs) or
databases (cloned gene analogs, CGAs) (Van Nocker
et al. 2002; Testolin 2003, Jung et al. 2004). The large-
scale single-pass sequencing of ESTs can give a more
global picture of the genes involved in the develop-
ment and function of organs and tissues. A recent
collection of ESTs from peach and almond based on
cDNA libraries has been released to public databases,
and more than 3,800 putative unigenes have been de-
tected (http://www.mainlab.clemson.edu/gdr/) (Main
et al. 2004). This work is complementary to the other
works regarding EST development in Prunus per-
formed by different research groups in other Euro-
pean countries (Grimplet et al. 2004; Pozzi et al. 2004).
Lazzari et al. (2004) also presented a collection of
6,817 ESTs prepared from four cDNA libraries ob-
tained from mesocarps of peach as part of the work of
the Italian National Consortium for Peach Genomics
(http://www.itb.cnr.it/ESTree). In almond, a study of
expressed transcripts during pistil development has
selected and partially sequenced over 1,000 clones

from a cDNA library. Analysis of these ESTs using
the National Center for Biotechnology Information
(NCBI) databases indicated significant similarity to
protein coding sequences in the database. The EST
analysis has provided a preliminary picture of the
numerous almond genes potentially involved in pis-
til development and provides an extensive reservoir
for future gene cloning and genetic mapping in al-
mond (Jiang and Ma 2003). As part of a worldwide
collaboration effort to increase and enrich the ge-
nomics resources in different Prunus species, the fab-
rication of different Prunus microarray using unigene
sets as probes is being initiated. A group of nearly
4,600 unique ESTs derived from peach mesocarp and
developing almond seeds have been sequenced to an-
alyze the expression profile of the unigene set during
fruit development and the identification of additional
genes involved in this process (McCord et al. 2004).
The development of microarrays has also been de-
scribed in peach for the study of fruit quality by Train-
otti et al. (2003, 2004) including the development of
markers associated to these important horticultural
characteristics.

A recent strategy for the location of new mark-
ers in an established genetic linkage map is the “se-
lective” or “bin” mapping approach. This technique
allows mapping with the use of a subset of plants of
a population from which a map is already available
(Vision et al. 2000). The plants of this subset are se-
lected to maximize the information on linkage, so that
their joint genotype for any marker identifies a small
as possible unique genome fragment (a bin). The ad-
vantage of this strategy is that it allows mapping with
less time and cost and is adequate for simplifying the
construction of high-density maps or for the addi-
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tion of large numbers of markers (such as SSRs or
EST-derived markers) to a previous map. Recently,
Howad et al. (2005) have incorporated 151 SSRs to the
Prunus reference map using only six individuals from
the T×E (‘Texas’ × ‘Earlygold’) Prunus reference pop-
ulation. The use of this set of six individuals, promises
to be a useful resource for Prunus geneticists in the
future.

Twin seeds (multiple embryos within the same
seed coat) occur spontaneously in several almond cul-
tivars including the Californian ‘Nonpareil’ and ‘Mis-
sion’ (Kester and Gradziel 1996). Seedlings from the
same twin peach seed are frequently viable and show
similar growth habits, though occasionally one of the
seedlings show weak growth and develops poorly.
Some of these low-vigor plants have been shown to
be haploids from which true-breeding dihaploids can
be generated (Gulcan 1975) for genetic studies, hy-
brid rootstock production, and transformation and
regeneration studies. In addition, some of the low-
vigor twin almond seedlings were found to be aneu-
ploids (Martínez-Gómez and Gradziel 2003) and thus,
have value for developing near isogenic lines (NIL).
A collection of these haploid/aneuploid NILs has been
presented as an interesting germplasm to aid in ge-
netic (locating genes, selective transfer of particular
chromosomes) andmolecular (isolationandsequenc-
ing of genes, genetic transformation, etc.) studies for
the development of new strategies of markers linkage
to agronomic traits in almond (Sánchez-Pérez et al.
2004c).

In conclusion, the typical long generation time,
alongwith the extensive space requirements andother
limitations to generating the required large segregat-
ing almond progeny populations, have frustrated the
development and testing of new almond cultivars.
These same limitations, however, make molecular-
based strategies that improve breeding efficiency par-
ticularly valuable to tree crops. Because they are veg-
etatively propagated, most Prunus tree crops such as
almond have a unique advantage over other agro-
nomic crops since desirable, unique gene/genomic
combinations can be ‘captured’ and disseminated by
clonal propagation. Future research needs include the
comparative mapping between the most important
genera of fruit crops and the numerous wild species.
Almond species include a large number of intercom-
patible species which provide an enormous gene pool
available for breeding. Little use has been made of this
variability because the slowness of classical breeding
methods. However, genomic methodologies, includ-

ing the development of quick gene sequencing and
cloning tools, may make it possible to rapidly discover
and incorporate genes of interest from this exotic ma-
terial. Additional advantages encouraging the utiliza-
tion of new technologies to almond tree crop improve-
ment include a small genome size, high levels of syn-
teny between genomes, and a well-established inter-
national network of cooperation among researchers.
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Bošković R, Tobutt KR, Batlle I, Duval H (1997) Correlation of
ribonuclease zymograms and incompatibility genotypes in
almond. Euphytica 97:167–176
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