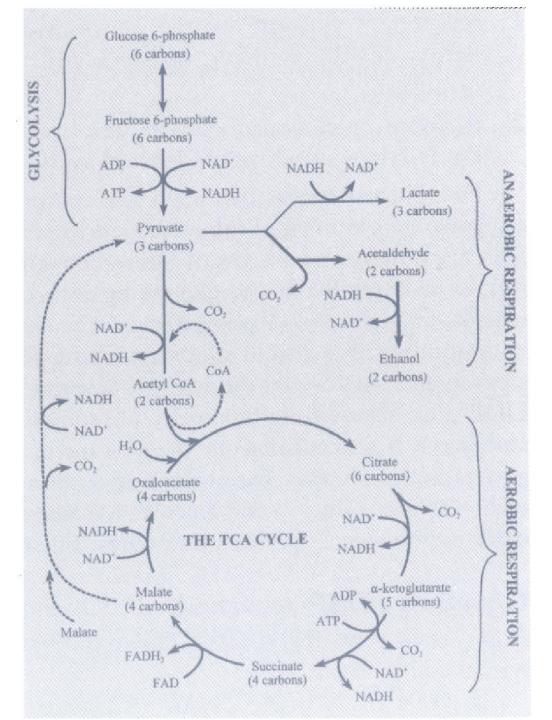

Fruit Respiration

Perishable Commodities are still alive!

They consume oxygen and produce carbon dioxide


Sugar+ O_2 \downarrow Energy + CO_2 + Water + Heat Respiration \rightarrow Heat \rightarrow Faster respiration \rightarrow More heat \rightarrow

The rate of respiration is affected by levels of oxygen and carbon dioxide

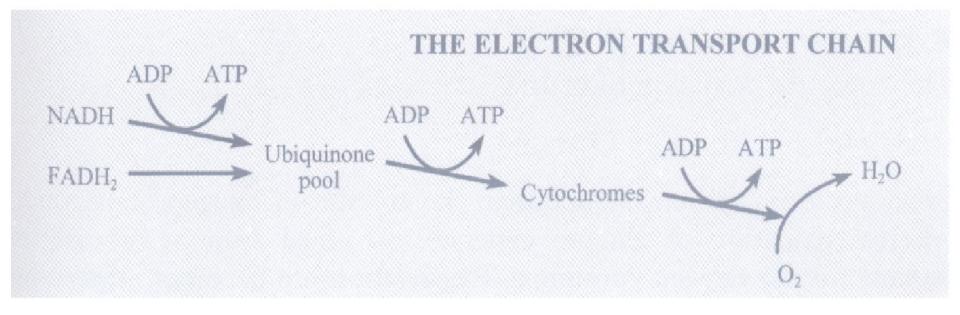

Fig. 2.26 The reactions of the TCA cycle. The numbers refer to the enzymes which catalyse the reactions. 1, pyruvic acid dehydrogenase; 2, citrate synthase; 3, aconitase; 4, isocitrate dehydrogenase; 5, α -ketoglutarate dehydrogenase; 5, succinate thiokinase; 7, succinate dehydrogenase; 8, fumarase; 9, malate dehydrogenase.

Figure 3.7 A simplified scheme for aerobic respiration of carbohydrate reserves in plants via glycolysis and the TCA cycle. Malate from the vacuole or mitochondria can be directly metabolised to pyruvate by NAD- or NADP-specific malic enzyme (ME). Pyruvate produced by ME or from fructose 6-phosphate can be oxidised via the TCA cycle or by anaerobic respiration. The conversion of intermediates in these pathways to CO, and the reduction of NAD and FAD to NADH and FADH₂, respectively, are also indicated. NADH and FADH, are oxidised via the electron transport chain (see Figure 3.8).

Figure 3.8

NADH and FADH₂ are oxidised via the electron transport chain to produce water and ATP from ADP. Three ATP molecules are produced from NADH and two from FADH₂.

•	Range of respiration rates	Fruits		
Class	(ml CO ₂ /kg·h) at 5°C	Climacteric	Non-climacteric	
Very low Low	<5 5-10	Apple, Asian pear (some cultivars), kiwifruit, papaya, pear, persimmon, plum, quince	Date, grape, nuts, pepino, pineapple Cactus pear, cherry, cranberry grapefruit, jujube, lemon, lime, mandarin, olive,	
Moderate	11–20	Apricot, banana, blueberry, feijoa, fig, guava, mango, nectarine, peach. plantain, rambutan, sapotes	orange, pomegranate, pummelo (pomelo) Gooseberry, lanson, longan, loquat, lychee, tamarillo, star fruit (carambola)	
High	21-30	Avocado, breadfruit, passion fruit	Blackberry, boysenberry,	
Very high	>30	Cherimoya, durian. jackfruit, soursop	raspberry, strawberry	

Table 1.2 Classification of fruits according to their respiration rate and pattern

Sources: Hardenburg et al., 1996; Kader, 1992; Ryall & Pentzer, 1982.

Adel A. Kader, 2001

Class	Range at 20°C (mgCO ₂ /kgh)	Commodities	
Very low	<5	Dates, dried fruits and vegetables, nuts	
Low	5–10	Apple, beet, celery, citrus fruits, cranberry, garlic, grape, honeydew melon, kiwifruit, onion, papaya, persimmon, pineapple, pomegranate, potato, pumpkin, sweet potato, water melon, winter squash	
Moderate	10–20	Apricot, banana, blueberry, cabbage, cantaloupe, carrot (topped), celeriac, cherry, cucumber, fig, gooseberry, lettuce (head), mango, nectarine, olive, peach, pear, plum, potato (immature), radish (topped), summer squash, tomato	
High	20-40	Avocado, blackberry, carrot (with tops), cauliflower, leek, lettuce (leaf), lima bean, radish (with tops), raspberry, strawberry	
Very high	40-60	Artichoke, bean sprouts, broccoli, Brussels sprout, cherimoya, cut flowers, endive green onions, kale, okra, passion fruit, snap bean, watercress	
Extremely high	>60	Asparagus, mushroom, parsley, peas, spinach, sweet corn	

TABLE 3.19 Some Horticultural Commodities Classified According to Their Respiration Rates

	Respiration Rate (mg carbon dioxide/kg h)		
Class	10°C	20°C	Examples
I. Very low	<10	<40	Nuts, dates, dried fruits
II. Low	10	40	Potatoes, onions, cucumbers, apple, pear, kiwi fruit, pomegranate, Chinese date
III. Moderate	10-20	40-80	Peppers, carrots, tomatoes, eggplant, citrus fruits, banana
IV. High	20-40	80-120	Peas, radish, apricot, fig, ripe avocado, cherimoya, papaya
V. Very high	>40	>120	Mushrooms, green onions, cauliflower, dill, parsley, melons, okra, strawberry, blackberry, raspberry

Classification of Fruits and Vegetables Based on Respiration Rate

Relative Perishability	Potential Storage Life (Weeks)	Commodities	
Very high	<2	Apricot, blackberry, blueberry, cherry, fig, raspberry, asparagus, bean sprouts, broccoli, cauliflower, cantaloupe, green onion, leaf lettuce, mushroom, pea, spinach, sweet corn, tomato (ripe), most cut flowers and foliage, fresh-cut (minimally processed) fruits and vegetables	
High	2–4	Avocado, banana, grape (without SO ₂ treatment), guava, loquat, mandari mango, melons (honeydew, crenshaw, pershian), nectarine, papaya, peac pepino, plum, artichoke, green beans, Brussels sprouts, cabbage, celery eggplant, head lettuce, okra, pepper, summer squash, tomato (partially ripe)	
Moderate	48	Apple and pear (some cultivars), grapes (SO ₂ treated), orange, grapefruit lime, kiwifruit, persimmon, pomegranate, pummel, table beet, carrot, radish, potato (immature)	
Low	8–16	Apple and pear (some cultivars), lemon, potato (mature), dry onion, garlic pumpkin, winter squash, sweet potato, taro, yam, bulbs and other propagules of ornamental plants	
Very low	>16	Tree nuts, dry fruits, and vegetables	

 TABLE 3.27
 Classification of Fresh Horticultural Commodities According to Relative Perishability and Potential Postharvest Life at Optimal Temperature and Relative Humidity

Produce	Precooling	Temperature (°C)	% RH	Postharvest Life	Sensitivity
Avocado	FC	4-13	85-90	2–4 weeks	CI
Orange	RC, FC	3–8	90	3–12 weeks	CI
Grapefruit	RC	10-15	85–90	6–8 weeks	CI
Lemon	RC	10–13	85-90	1–6 months	CI
Lime	RC	9–10	85–90	6–8 weeks	CI
Pomegranate	HC, FC	5°C	90	2–3 months	CI
Persimmon	FC	−1°C	90	3–4 weeks	
Lychee	FC	1.5	90–95	3–5 weeks	Desiccation
Fig	FC	0	85-90	7–10 days	
Date	RC	-15 to 0	≤75	6–12 months	
Olive	RC	5-10	85–90	4–6 weeks	CI
Kiwifruit	FC	0	85	4–7 weeks	

TABLE 3.12 Characteristics for Some Subtropical Fruits

HC, hydrocooling; FC, forced-air cooling; RC, room cooling; CI, chilling injury.

Produce	Precooling	Temperature (°C)	% RH	Postharvest Life (Weeks)	Sensitivity
Banana	FC, RC	13–15	90–95	1-4	CI
Plantain	FC, RC	13–15	90–95	1–5	CI
Mango	FC	10–13	85–90	2-4	CI
Papaya	FC	7–13	85–90	1–3	CI
Guava	FC	5-10	85–90	2–3	CI

TABLE 3.13 Characteristics of Some Tropical Fruits

FC, forced-air cooling; RC, room cooling.

Produce	Precooling	Temperature (°C)	% RH	Postharvest Life
Grape	FC	-1 to 0	90–95	1–6 months
Strawberry	FC	-1 to 0	90–95	5–7 days
Blackberry	FC	-1 to 0	90–95	2-3 days
Blueberry	FC	-1 to 0	90–95	2 weeks
Cranberry	FC	-1 to 0	90–95	2-4 months
Gooseberry	FC	-1 to 0	90–95	2-4 weeks
Raspberry	FC	-1 to 0	90–95	2-3 days

TABLE 3.14 Characteristics of Some Small Fruits

FC, forced-air cooling.

TABLE 3.15 Characteristics of So	ome Pome Fruits
----------------------------------	-----------------

Produce	Precooling	Temperature (°C)	% RH	Postharvest Life	Sensitivity
Apple	FC, HC	0-4	85–90	2-9 months	Brown core in McIntosh
Pear	FC, HC	-0.5 to 0.5	90-95	2-6 months	
Quince	VC	0.1	95	2-3 months	

VC, vacuum cooling; HC, hydrocooling; FC, forced-air cooling; RC, room cooling.

Produce	Precooling	Temperature (°C)	% RH	Postharvest Life (Weeks)
Peach	HC, FC	0	90–95	2–4
Nectarine	HC, FC	0	90-95	2–4
Plum	FC, RC	0	90-95	4–5
Apricot	FC, RC	0	90-95	1–2

TABLE 3.16 Characteristics of Some Stone Fruits

HC, hydro-cooling; FC, forced-air cooling; RC, room cooling.

TABLE 3.17 Char	racteristics of	Some	Nuts
-----------------	-----------------	------	------

Produce	Postharvest Life (Months)
Pecan	12–18
Walnut	10–20
Almond	15–20
Macadamia	12–24
Pistachio	12

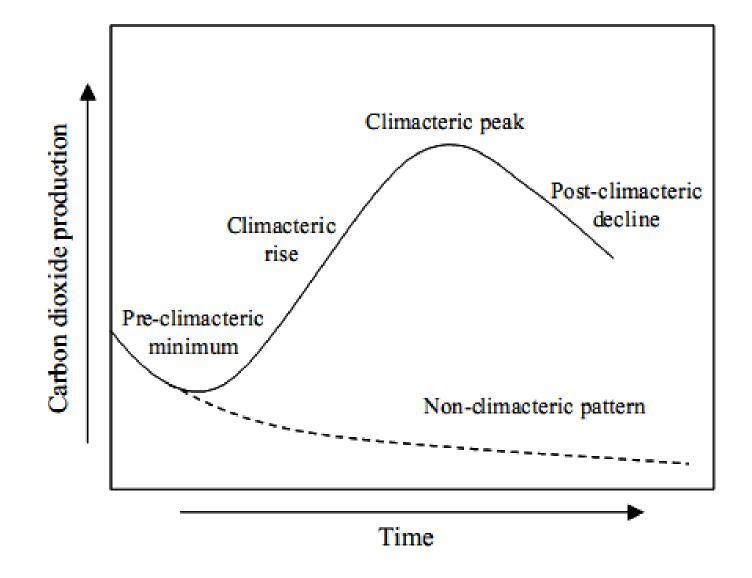
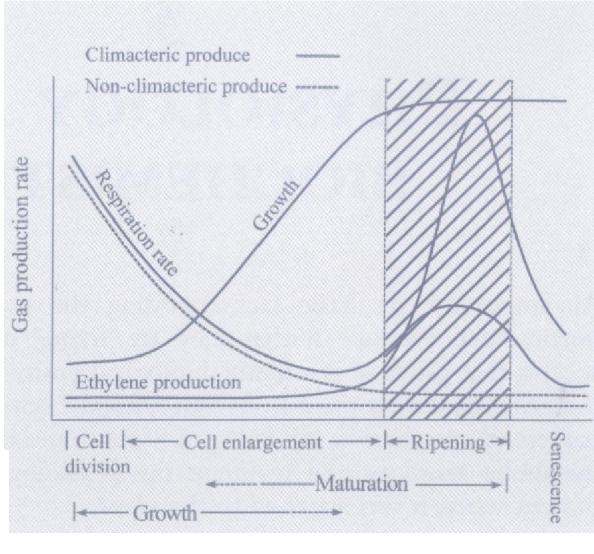



Figure 1. The climacteric pattern of respiration in ripening fruit.

Growth, respiration and ethylene production patterns of climacteric and non-climacteric plant organs.

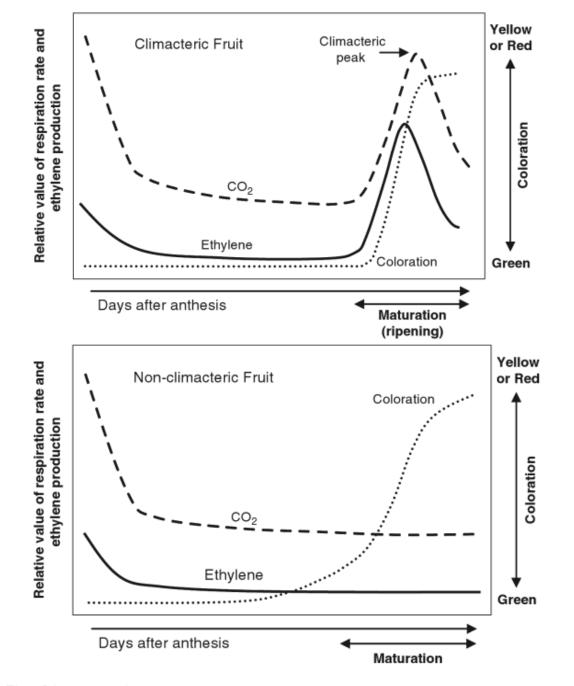
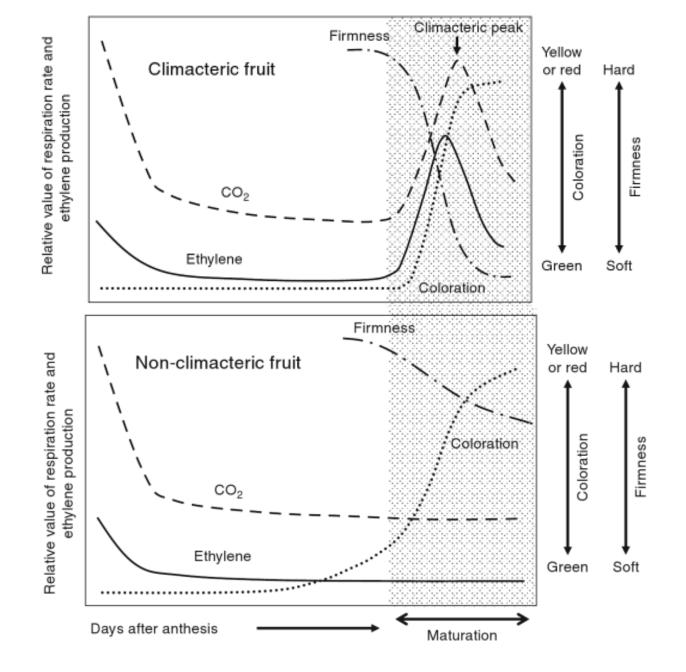
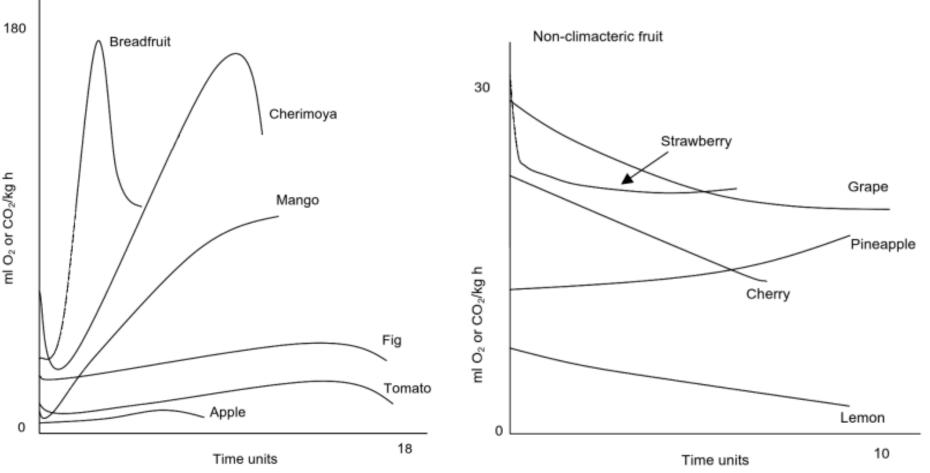




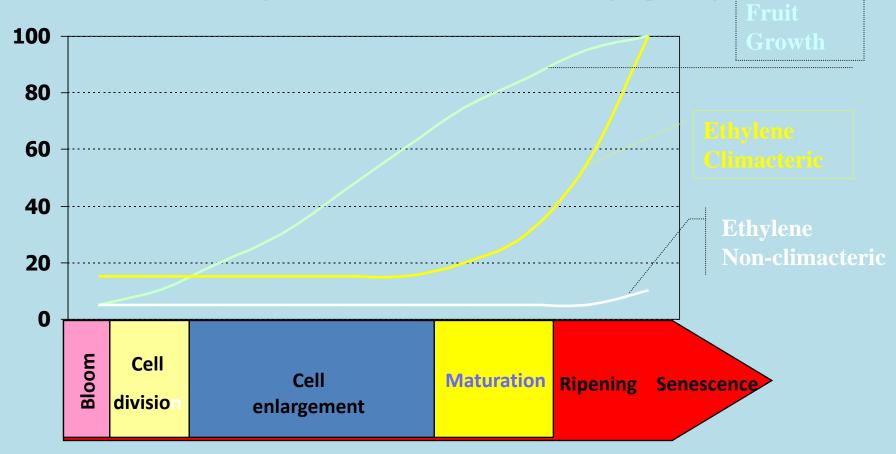
Fig. 15.3 Patterns of respiration rate, ethylene production, and coloration in climacteric and nonclimacteric fruit

Typical ripening pattern in climacteric and non-climacteric fruits.



Respiration patterns during the ripening of Fig. 2.27 climacteric and non-climacteric fruit. Source: Seymour et al. 1993.

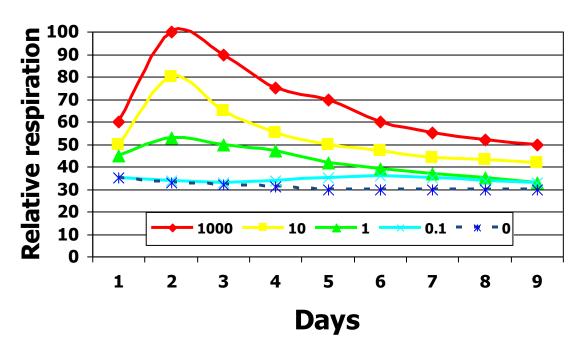
ml O2 or CO2/kg h


Climacteric fruit

Types of Fruit Climacteric vs. Non-climacteric Respiration increases during ripening

Types of Fruit Climacteric vs. Non-climacteric

Ethylene content higher and increases more during ripening

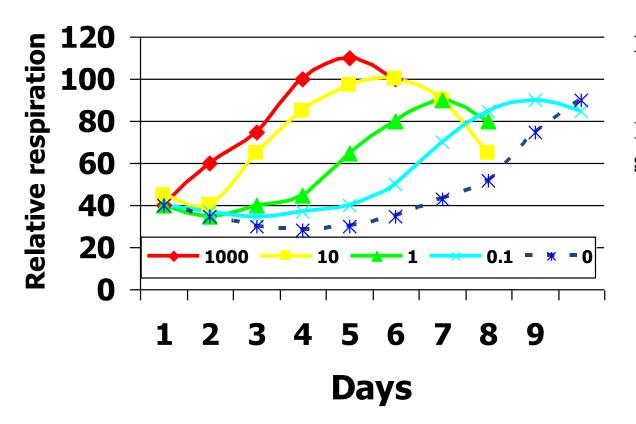

HORT 319 - Temperate Fruit and Nut Production

- Climacteric fruit
 - Increased respiration at ripening
 - Ripen faster
 - Ethylene
 - Produce more
 - Higher internal level
 - Level increases at ripening
 - Applied Ethylene
 - Respond to applied ethylene in non-rate dependent fashion

- Non-climacteric fruit
 - No increase in respiration
 - Ripen slower
 - Ethylene
 - Produce less
 - Lower internal levels
 - No increase at ripening
 - Applied Ethylene
 - Rate dependent response

Fruit Respiration in Response to Ethylene

Non-climacteric



Rate dependent response to ethylene

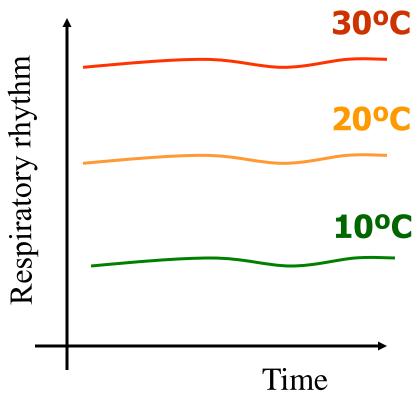
Amount of ethylene dictates the ultimate level of response

Fruit Respiration in Response to Ethylene

Climacteric

Non-rate dependent

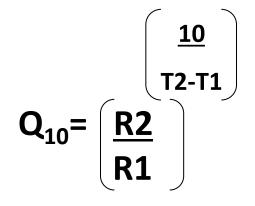
React to a threshold level to give about same response


Respiration and Shelf Life

Respiration rate and shelf life are inversely related.

Higher respiration ↓ Shorter Shelf Life

Temperature effects on respiration rate.



- At temperatures above the optimum, the rate of deterioration increases 2 to 3 fold for every 10°C rise in temperature.
- High temperatureincreases the transpiration rate.

Temperature & Respiration

- Temperature is the most important factor influencing the postharvest life of the given commodity.
- Temperature dictates the speed of chemical reactions including respiration.
- Typically, for every increase of 10°C, the respiration increases between 2 and 4 fold.

R1=Respiration at Temperature 1 (T1) R2=Respiration at Temperature 2 (T2)

Temperature (°C)	Assumed Q ₁₀	Relative velocity of respiration	Relative shelf life
0		1.0	100
10	3.0	3.0	33
20	2.5	7.5	13
30	2.0 1.5	15.0	7
40	1.5	22.5	4

Table 2 Effect of Temperature on Respiration Rate of Vegetables

Temperature (°C)	Asparagus		Cauliflower		Kale		Lettuce		Onions		Tomatoes	
	Resp.	Q ₁₀	Resp.	Q ₁₀	Resp.	Q ₁₀	Resp.	Q ₁₀	Resp.	Q ₁₀	Resp.	Q ₁₀
0	54		19		_		23		3		_	
		3.2		1.3		_		1.7		1.7		_
5	96		22		22		30		4		8	
		3.0		2.7		3.5		1.7		4.0		5.1
10	167		36		41		39		8		18	
		2.1		2.3		3.6		2.6		1.7		2.4
15	244		54		78		63		11		28	
		2.5		2.5		3.1		2.5		3.0		2.1
20	387		86		138		100		19		41	
		2.0		2.6		2.7		2.2		2.3		1.6
25	550		140		226		147		29		51	

 $\label{eq:constraint} \textbf{Table 3} \quad \text{Respiration Rates (mg } CO_2 \cdot kg^{-1} \cdot h^{-1}) \text{ and } Q_{10} \text{ Values for Selected Vegetables}$

	Temperature range (°C)			
Commodity	0 to 10	10 to 20	20 to 30	
Asparagus				
Appearance quality	2.7	2.4	1.8	
Sugar loss	5.8	2.7	1.4	
Fiber increase	10.0	2.0	2.0	
Brussels sprouts (visual)	3.8	2.7	1.9	
Celery (visual)	4.1	2.3	1.9	
Head lettuce (visual)	2.5	2.2	1.9	
Peas				
Appearance quality	3.3	2.8	2.0	
Sugar loss	2.7	2.6	1.5	
Spinach (visual)	3.3	2.5	1.8	
Sweetcorn (sugar loss)	3.9	3.6	1.5	

Table 4 Temperature Quotient (Q10) for Rate of Vegetable Deterioration

The affect of temperature

The affect of temperature on broccoli after 48 hr of storage at either room temperature or in cold storage

24°C

4°C

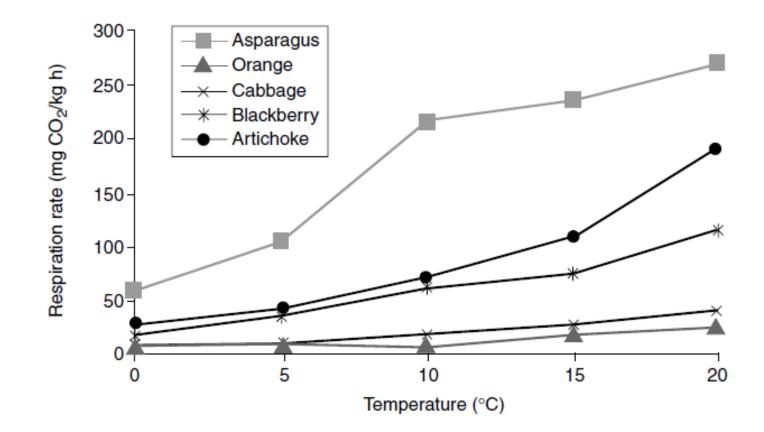


FIGURE 2.3 Effect of temperature on the respiration rates of some fruits and vegetables. (Data taken from K. C. Gross et al. *The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks—A Draft Version of the Revision to USDA Agricultural Handbook Number 66* (2002) (revised in 2004) (www.ba.ars.usda.gov/hb66/index.html.)