
Effect of ethylene on quality of fresh fruits and vegetables

FIG. 5.2 The relationship between the storability and quality in fruit and vegetables (Watkins and Nock, 2012).

Classification of Fruits and Vegetables according to Ethylene Production Rates at 20°C

Class	Rate (µL/kg h)	Examples	
I. Very low	<0.1	Artichoke, asparagus, cauliflower, cherry, strawberry, pomegranate, leafy vegetable, potatoes	
II. Low	0.1-1.0	Blueberry, cranberry, cucumber, eggplant, okra, olive, pepper, persimmon, pineapple, pumpkin, raspberry, tamarillo, watermelon	
III. Moderate	1.0-10.0	Banana, fig, guava, melon, honeydew, mango, plantain, tomatoes	
IV. High	10.0–100.0	Apple, apricot, avocado, cantaloupe, feijoa, kiwi, nectarine, papaya, peach, pear, plum	
V. Very high	>100.0	Cherimoya, passionfruit, sapota	

Colorless gas at biological temperatures.

Naturally occurring organic compound.

Readily diffuses within and from tissue.

Produced from methionine via ACC by a highly regulated metabolic pathway.

Key enzymes are ACC synthase and ACC oxidase.

Ethylene synthesis is inhibited (negative feed-back inhibition) by C₂H₄ in vegetative and immature climacteric and non-climacteric reproductive tissue.

Ethylene synthesis is promoted (positive feed-back promotion, or autocatalytic) by C₂H₄ in reproductive climacteric tissue.

Effective at part-per-million (ppm, μl l⁻¹) and part-per-billion (ppb, nl l⁻¹) concentrations (1 ppm equals 6.5×10⁻⁹ M at 25°C).

Requires O₂ to be synthesized, and both O₂ and low levels of CO₂ to be active.

Plant responses to ethylene

Ethylene stimulates

Synthesis of C₂H₄ in ripening climacteric fruit.

Ripening of fruit.

Pigment (e.g. anthocyanin) synthesis.

Chlorophyll destruction and yellowing.

Seed germination.

Adventitious root formation.

Respiration.

Phenylpropanoid metabolism.

Flowering of bromeliads.

Abscission.

Senescence.

Ethylene inhibits

Ethylene synthesis in vegetative tissue and non-climacteric fruit.

Flower development in most plants.

Auxin transport.

Shoot and root elongation (growth).

Normal orientation of cell wall microfibrils.

Examples of how the same ethylene response can be beneficial in one system and detrimental in another

Example of benefit	Ethylene response	Example of detriment
Degreening of citrus Ripening of cli-	Accelerates chlorophyll loss Promotes ripening	Yellowing of green vegetables Overly soft and
macteric fruit Defense against pathogens	Stimulates phenyl- propanoid metabolism	mealy fruit Browning and bitter taste

Beneficial effects of ethylene on the quality of fresh fruits and vegetables

Promotes color development in fruit.

Stimulates ripening of climacteric fruit.

Promotes de-greening of citrus.

Stimulates dehiscence in nuts.

Alters sex expression in the cucurbitaceae.

Promotes flowering in bromeliaceae (e.g. pineapple).

Reduces lodging of cereals by inhibiting stem elongation.

Detrimental effects of ethylene on the quality of fresh fruits and vegetables

Accelerates senescence.

Stimulates chlorophyll loss (e.g. yellowing).

Enhances excessive softening of fruits.

Stimulates sprouting of potato.

Promotes abscission of leaves and flowers.

Stimulates phenylpropanoid metabolism.

Promotes discoloration (e.g. browning).

Hastens toughening of vegetables.

Adverse Effects of Ethylene in Fruits and Vegetables

Produce	Symptoms		
Asparagus	Woodiness		
Carrots	Bitterness due to isocoumarine formation		
Potatoes	Sprouting		
Lettuce Russet spotting			
Broccoli	Yellowing, abscission, off flavors		
Eggplant	Browning of flesh and seeds, decay induction		
Cucumber	Yellowing, softening		
Sweet potatoes	Browning of pulp, off flavor, failure to soften upon cooking		

Activity of ethylene analogs in plants

Gases	Half-maximal activity μl 1-1	
Ethylene	0.1	
Propylene	10	
Carbon monoxide	270	
Acetylene	270	
1-Butene	27 000	

Optimal ripening conditions for fruit ripening

Temperature	18 to 25°C		
Relative humidity	90 to 95%		
Ethylene concentration	10 to 100 ppm		
Duration of treatment	24 to 74 hours depending on fruit type and stage of maturity		
Air circulation	Sufficient to ensure distribution of ethylene within ripening room		
Ventilation	Require adequate air exchange in order to prevent accumulation of O_2 , which reduces effectiveness of $\mathrm{C}_2\mathrm{H}_4$.		

Commodity	Ethylene conc.(ppm)	Ethylene exposure time (hr.)	Ripening temp. °C	Storate Temp.ºC
Avocado	10-100	12-48	15-18	4.4-13
Banana	100-150	24	15-18	13-14
Honey dew melon	100-150	18-24	20-25	7-10
Kiwifruit	10-100	12-24	0-20	0.5-0
Mango	100-150	12-24	20-22	13-14
Orange degreening	1-10	24-72	20-22	5-9
Stone fruit	10-100	12-72	13-25	-0.5-0

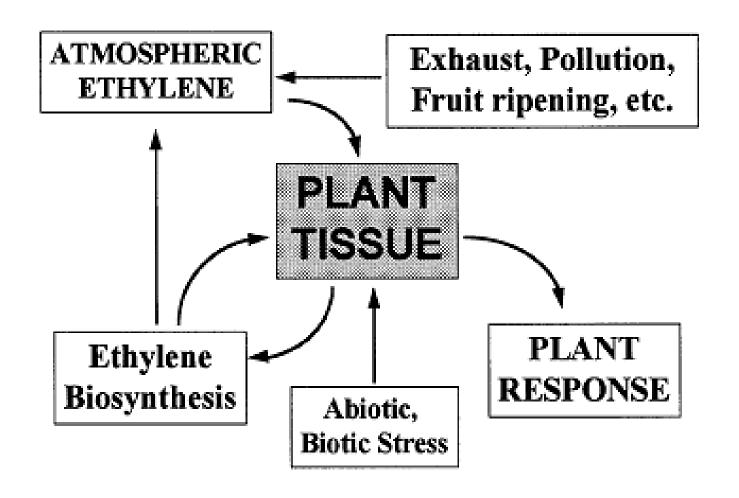


Fig. 2. Ethylene interactions with the plant and its environment.