

۱- اگر سرعت v ثابت و برابر با ۲ متر در ثانیه باشد، سرعت و شتاب پین P را در x=0.25 محاسبه کنید (۳۵ نمره).

The constant velocity v = 2 m/s. What are the magnitudes of the velocity and acceleration of point P when x = 0.25 m?

r=1 لغزنده ۱ کیلوگرمی r=2 روی مسیر محنی شکل توسط میله مستقیم شیاردار حرکت می کند. میله منحنی شکل راهنما در صفحه عمودی قرار دارد و منحنی آن با رابطه $r=2(rac{ heta}{2\pi}+1)m$ بیان می شود که در آن θ بر حسب رادیان است. موقعیت زاویه ای میله مستقیم شیاردار به صورت $\theta=2t$ Rad بیان می شود. وقتی که $\theta=120^\circ$ است، مؤلفه ی شعاعی و مماسی نیروی کلی خارجی وارد بر لغزنده θ را به دست آورید (۳۵ نمره).

The 1 kg slider A is pushed along the curved bar by the slotted bar. The curved bar lies in the vertical plane, and its profile is described by $r = 2(\theta/2\pi + 1)$ m, where θ is in radians. The angular position of the slotted bar is $\theta = 2t$ rad, Determine the radial and transverse components of the total external force exerted on the slider when $\theta = 120^{\circ}$.

$$\vec{v}_A = (0.2i + 0.3\hat{j} - 0.02\hat{k})$$
 $\frac{m}{s}$ حر شکل زیر جسم B در ابتدا نسبت به زمین بدون سرعت است و جرم A با سرعت B به آن نزدیک می شود. الف: اگر هر دو جسم به هم متصل شوند، سرعت مرکز جرم را پس از اتصال دو جسم به دست آورید (۱۵ نمره). \mathbf{v} ناگر ضریب بازگشت $e=0.95$ باشد، سرعت هر کدام از اجسام را بعد از برخورد محاسبه کنید (۱۵ نمره).

The mass A attempts to dock with the mass B, 15. Their masses are m_A = 18 kg and m_B = 6.6 kg. The mass B stationary relative to the reference frame, and the mass A approaches velocity V_A = (0.2 i + 0.3 j - 0.02 k) m/s.

- (a) If the first attempt at docking is successful, what is the velocity of the centre mass of the combined masses afterwards?
- (b) If the coefficient of restitution of resulting impact is e = 0.95, what are the velocities of the two masses after impact?

