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Equilibrium and Free-Body Diagram
System: used to denote any isolated part or portion of a machine or
structure. A system may consist of

e a particle, or several particles,
e a part of rigid body, an entire rigid body, or several rigid bodies.

Equilibrium: A system is said to be in equilibrium if it is motionless or has a
constant velocity, i.e.; zero acceleration. The phrase static equilibrium is also
used to imply that the system is at rest. For equilibrium, the forces and moments
acting on the system balance such that

Zﬁ =Z FXI+ ZF)/]+ ZF_,I; -0 (Vecforial Represen‘raﬂon)

[zA=0

>.F=0 (Scalar Representation)

S

Zh;\ =Z Mj+ ZMyj it ZMZI: =0 (Vecfor'ial Represen#aﬂon)

{ZMX:O
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and
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2.M =0



Free-Body Diagram (FBD)

Free Body Diagram (FBD) is a sketch that shows a body of interest isolated
from all interacting bodies. Once the body of interest is selected, the
forces and moments exerted by all other bodies on the one being
considered must be determined and shown in the diagram, see Figure

Free Body Diagram
(FED)

E)) (b)

Total System




Free-Body Diagram

The diagram establishes the directions of reference axes, provides a place
to record the dimensions of the subsystem and the magnitudes and
directions of the known forces, and helps in assuming the directions of
unknown forces.

The diagram simplifies your thinking because it provides a place to store
one thought while proceeding to the next.

The diagram provides a means of communicating your thoughts clearly and
unambiguously to other people.

Careful and complete construction of the diagram clarifies fuzzy thinking by
bringing out various points that are not always apparent in the statement or
in the geometry of the total problem. Thus, the diagram aids in
understanding all facets of the problem.

The diagram helps in the planning of a logical attack on the problem and in
setting up the mathematical relations.

The diagram helps in recording progress in the solution and in illustrating
the methods used.

The diagram allows others to follow your reasoning, showing all forces.



Example 3.1

Draw a free body diagram for the
beam shown in Fig. 4-2a.

Solution
Referring to Figure 4-2 (b):

® Two concentrated forces

Pand P, are applied to the
beam.

® The weight of the beam is

represented by the force W,
which has a line of action that
passes through the center of

gravity & of the beam.

Figure (b)

® The beam is supported at the left end with a smooth pin and bracket and at the
right end with a roller.

® The reaction of the left support is represented by the forces AX and A},.

® The reaction of the roller is represented by the force By, which acts normal to

the surface of the beam.
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Free-Body Diagram Example 3-2

Figure 3-2 shows a simplified rendition of a gear reducer where the input and output
shafts AB and CD are rotating at constant speed @ and «,, respectively. The input and
output torques (torsional moments) are T, =28 N.m and T, respectively. The shafts are
supported in the housing by bearings at A, B, C and D. The pitch radii of gears G,
and G, are r, =20mm and r, = 40 mm,

respectively. Draw the FBD of each member and determine the net reaction
forces and moments at all points.

Solution
Simplifying assumptions:
1. Gears G, and G, are spur gears with a standard(bressure angle ¢ =20° .
2. The bearings are self aligning and the shafts can be considered to be simply
supported.
3. The weight of each member is negligible.

4. Friction is negligible.
5. The mounting bolts at E, F, H and | are of the same size.

The separate FBD of the members are shown in Figs 4-4 b-d. The force transmitted
between the spur gears is not tangential but at the pressure angle ¢ . Thus,

N =Ftan ¢



Free-Body Diagram Example 3-1

{c) Input shaft
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Free-Body Diagram Example 3-2

Input Shaft AB S M =0= F(002 )- 28 =0=F =1400 N (2)

and the normal force is

N=F tan¢g =1400tan20 =509.6 N (3)

>F=0=R, +R =F=1400N (4)
DF=0=R,_+R,_=N=5096N (5)

DM =0=R, (65)-F (40 )=0=R, = 86L5N (6)
SM, =0=R,, (40 )-R,. (25)=0=R,, =1.6R,, 7)

Substitution of Eq. (6) into Eq. (4) gives ‘st = 538.5 N. Similarly, substitution

of Eq. (7) into Eq. (5) gives R, =196 N and R, =3136N

25

By
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Free-Body Diagram Example 3-2

Output Shaft CD

Following the same procedure,

2620:>QD},+Q@:F:140{)N.111 (8)
ZFE:O:QDI+.QCI:N:509-6 N.m (9)
SM= 0:},9@(65] _F (40)=0 —R,=  8615N (10)
S M, =0=R, (35)-R, () =0 =R, =16&

therefore

RD}/ =1400-861.5=5385N | Similarly, substitution of Eq. (11) into Eq. (9) gives

R _.=196N ,therefore R, =313.6N.

(d) Output shaft

Shigley’s Mechanical Engineering Design



Free-Body Diagram Example 3-2

The output moment is

T =28+ 1400 ( 0.02) =56 N.m

Notice that in Fig.4-4(b) the net force from bearing reactions is zero whereas the
net moment about the x-axis is

T: ('rlII +!5)Rcy + (rl'—l_ G)Rby = (rl' + G)(Rﬁ"}" +£D}’)
T =0.06 (861.5) + 0.06 (538.5) = 84 N.m

(a) Gear reducer (b) Gear box

Shigley’s Mechanical Engineering Design



Gear Box

The reaction forces R, R, R, , and R; from the mounting bolts cannot be
determined from the equilibrium equations as there are too many unknowns. Only

three equations are available sF, =sF, =sM, =0. In case you were

wondering about assumption 5, here is where we will use it. The gear box tends to rotate
about the x-axis because of pure torsional moment of 84 N.m . The bolt forces must provide
an equal but opposite torsional moment. The center of rotation relative to the bolts lies
at the center of the centroid of the bolt cross-sectional area. Thus if the bolt areas are
equal: the center of rotation is at the center of the four bolts, a distance of

100 2+ 125\ _ o
> > = mm

The bolt forces are equal R-=R-=R,=R;=R), and each bolt force is
perpendicular to the line from the bolt to the center of rotation. This gives a net torque
from the four bolts of 4R (0.08) = 84 N.m .

ThUS,RE =RF =RH =RI =262N

(a) Gear reducer (B) Gear box
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Shear Force and Bending Moments in Beams

Figure shows a beam supported by reactions R; and R, and loaded by the concentrated
forces F; , F,, and F,. If the beam is cut at some section located at x = x; and the left
hand portion is removed as a free body, an internal shear force V and bending
moment M must act on the cut surface to ensure equilibrium.

® The shear force is obtained by summing the forces on the isolated sections.
® The bending moment is the sum of the moments of the forces to the left of the
section taken about an axis through the isolated section.

The sign conventions used for bending moment and shear force are shown in Figure .

y

.\’
Fy  cut F, F F,
Vv
X X
A M
<—— X —>|
R

vV
-~ X| —>
TRZ RI

Figure FBD of simply suppofted beam with V and M showrin positive direction

1



Sign Conventions for Bending and Shear

(=) = )

Positive bending Negative bending

A A
} |

Positive shear Negative shear

Sign conventions for bending and shear.

Shear force and bending moment are related by

Shear Force \V dM/_ Bending moment
dx

(3-3)




Distributed Load on Beam

» Sometimes the bending is caused by a distributed load g(x)
 Distributed load g(x) called load intensity
 Units of force per unit length and is positive in the positive y direction

; g ()

L AT T

|
_Q

Distributed load on beam.

dv d*M
dx  dx?

=(q (3-4)



Relationships between Load, Shear, and Bending

Shear Force \ (ZM/—- Bending moment

V = (3—3)
dx
dV — d*M
— = = 3—4
dx d x?2 9 (3-4
VB Xp
/ dV = Vg — V4 = / q dx (3-5)
VA XA
1'1-’[3 XB
/ dM = Mp — M 4 :/ V dx (3—6)
1'1-’[/4 XA

e The change in shear force from A to B is equal to the area of the
loading diagram between x, and Xg.

e The change in moment from A to B is equal to the area of the
shear-force diagram between x, and Xg.



Singularity Functions

° A notatlon useful Function Graph of f, (x) eaning
for Inte ratln Concentrated (x—ay? x—a)™ =0 x+#a
g g moment x—a)y?=400 x=a
(unit doublet)
across ~ [o-aar=t-a
discontinuities e
e Angle braCketS foncentrated (x—a)™ x—a) =0 «x #a
. . . orce A r—a)y =406 x=a
indicate special nitimpuse) </< o
function to
determine whether : ;
: (x—a) 0_ x<a
forces and moments ™" S w-a®={y .2,
are active L feate=p-a
Ramp (r-a) x—a)! = li)—a );:Z
1 1 X /(x—a)]dx=<x_za>2

"W. H. Macaulay, “Note on the deflection of beams,” Messenger of Mathematics, vol. 48, pp. 129-130, 1919.
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Shear-Moment Diagrams

y
0.5m
‘800 N l400 N

(a) - X
0.1 m
—’I 0.25m
R, W Ry
V(N)
840
(b) b 1 x
-360-1-
(c) x
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Stress

Normal stress is normal to a surface, designated by o
Tangential shear stress Is tangent to a surface, designated by 7
Normal stress acting outward on surface is tensile stress
Normal stress acting inward on surface is compressive stress
U.S. Customary units of stress are pounds per square inch (psi)
SI units of stress are newtons per square meter (N/m?)

1 N/m? = 1 pascal (Pa)



Stress element

¥y v

Figure 3-8

" . .,
(a) General three-dimensional )
stress. (b) Plane stress with

“cross-shears™ equal. I T
T..I-_: T_r_v
.
Try ——- T,
X e
Tx
T

U'__

(a) (b

Txy
X
fT_l.

i’
¢
Z

» Represents stress at a point
» Coordinate directions are arbitrary

» Choosing coordinates which result in zero shear stress will
produce principal stresses



Cartesian Stress Components

Defined by three mutually orthogonal surfaces at a point within
a body

Each surface can have normal and shear stress

Shear stress Is often resolved into perpendicular components
First subscript indicates direction of surface normal

Second subscript indicates direction of shear stress

)

Fig. 3-8 (a)



Cartesian Stress Components

Defined by three mutually orthogonal surfaces at a point within

a body

Each surface can have normal and shear stress
Shear stress Is often resolved into perpendicular components

First subscript indicates direction of surface normal
Second subscript indicates direction of shear stress

y

)

g _\_



Cartesian Stress Components

* In most cases, “cross shears” are equal
Tyx = Txy Tzy = Tyz Txz = T (37

 This reduce the number of stress components from nine to six
quantities, ,, G, G,, Ty, Ty, aNd T,

» Plane stress occurs when stresses on one surface are zero




Plane-Stress Transformation Equations

 Cutting plane stress element at an arbitrary angle and balancing

stresses gives plane-stress transformation equations
Oy + Oy Oy — O

0 =—— 4 = : = €08 2¢p + T,y $in 2¢) (3-8)

O'X - O""_‘

Sin2¢ + T,y COS 2¢ (3-9)




Principal Stresses for Plane Stress

Differentiating Eqg. (3-8) with respect to ¢ and setting equal to
Zero maximizes o and gives

27Ty
tan2¢, = : (3—-10)

()")( - O.\*

The two values of 2¢, are the principal directions.

The stresses in the principal directions are the principal stresses.
The principal direction surfaces have zero shear stresses.
Substituting Eq. (3-10) into Eqg. (3-8) gives expression for the
non-zero principal stresses.

Oy + Oy o — oy )\’
o1,07 = 'k2 L4 (’k2 )) —I—rv,(.z). (3—13)

Note that there is a third principal stress, equal to zero for plane
stress.



Extreme-value Shear Stresses for Plane Stress

» Performing similar procedure with shear stress in Eg. (3-9), the
maximum shear stresses are found to be on surfaces that are

+45° from the principal directions.
e The two extreme-value shear stresses are

Oy — Oy 2
‘L'l,‘L'z::I: (Jt > jl) ‘|—'C'§}. (3—]4)




Mohr’s Circle Diagram

A graphical method for visualizing the stress state at a point
Represents relation between Xx-y stresses and principal stresses
Parametric relationship between o and 7 (with 2¢ as parameter)

Relationship is a circle with center at
C=(c )=[(o,+0)20]

and radius of




Mohr’s Circle Diagram

cw

TV | o, >
il —Iel (Ux_g-y) >
— Ux_a)“ -
< 3 >
F
|
Y H
cwW
I (03;) Txy )
T |
| [
Tey |
|
E[ | 2¢ D
ag
ol | 9 ¢ ' [ T
I
[
" | Tey
& .
b
o |
2\79 A 20, l
* 2
. % (G T )
%
o+ 'G
TV | ¢ X Y |
< 3 >
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Example 3-4

A stress element has o, = 80 MPa and 7,y = 50 MPa cw, as shown in Fig. 3—11a.

(a) Using Mohr’s circle, find the principal stresses and directions, and show these
on a stress element correctly aligned with respect to the xy coordinates. Draw another
stress element to show 7; and 72, find the corresponding normal stresses, and label the
drawing completely.

(b) Repeat part a using the transformation equations only.

y
50 €——
I
50
—_—
(a)
Fig. 3—11

Shigley’s Mechanical Engineering Design



Example 3-4

(a) In the semigraphical approach used here, we first make an approximate freehand
sketch of Mohr’s circle and then use the geometry of the figure to obtain the desired
information.

Draw the o and 7 axes first (Fig. 3—11b) and from the x face locate o, = 80 MPa
along the o axis. On the x face of the element, we see that the shear stress 1s 50 MPa in
the cw direction. Thus, for the x face, this establishes point A (80, 50°%) MPa.
Corresponding to the y face, the stress is 0 = 0 and r = 50 MPa in the ccw direction.
This locates point B (0, 50°“%) MPa. The line A B forms the diameter of the required cir-
cle, which can now be drawn. The intersection of the circle with the o axis defines o
and o, as shown. Now, noting the triangle AC D, indicate on the sketch the length of the
legs AD and C D as 50 and 40 MPa, respectively. The length of the hypotenuse AC is

71 = /(50)2 + (40)2 = 64.0 MPa

and this should be labeled on the sketch too. Since intersection C 1s 40 MPa from the
origin, the principal stresses are now found to be

oy =40 + 64 = 104 MPa and oy =40 — 64 = —24 MPa

The angle 2¢ from the x axis cw to oy 1s

—1 50 0
2¢?p =tlan 5 = 51.3

Shigley’s Mechanical Engineering Design



Example 3-4

cwW

(80, 50°™)

2¢,

(0, 50°%)

F I g ' 3_11 Shigley’s Mechanical Engineering Design



Example 3-4

To draw the principal stress element (Fig. 3—11c¢), sketch the x and y axes parallel
to the original axes. The angle ¢, on the stress element must be measured in the same
direction as is the angle 2¢, on the Mohr circle. Thus, from x measure 25.7° (halt of
51.3°) clockwise to locate the o) axis. The o7 axis 1s 90° from the o axis and the stress
element can now be completed and labeled as shown. Note that there are no shear
stresses on this element.

Shigley’s Mechanical Engineering Design



Example 3-4

The two maximum shear stresses occur at points £ and F in Fig. 3—11b. The two
normal stresses corresponding to these shear stresses are each 40 MPa, as indicated.
Point E is 38.7° ccw from point A on Mohr’s circle. Therefore, in Fig. 3—11d, draw a
stress element oriented 19.3° (half of 38.7°) ccw from x. The element should then be
labeled with magnitudes and directions as shown.

In constructing these stress elements it is important to indicate the x and y direc-
tions of the original reference system. This completes the link between the original
machine element and the orientation of its principal stresses.

Flg' 3_ 1 1 (d) Shigley’s Mechanical Engineering Design



Example 3-4

(b) The transformation equations are programmable. From Eq. (3—-10),

1 27y 1 2(—50
¢, = = tan! (—2_ ) = Zqan~! (222 = _25.7°, 64.3°
2 Ux - Uy 2- 80

From Eq. (3-8), for the first angle ¢, = —25.7°,

_80+0  80—0

> + 5 cos[2(—25.7)] 4+ (=50) sin[2(—25.7)] = 104.03 MPa

a

The shear on this surface is obtained from Eq. (3-9) as

T = — 802_ Y sin[2(—=25.7)] + (—50) cos[2(—25.7)] = 0 MPa

which confirms that 104.03 MPa is a principal stress. From Eq. (3-8), for ¢, = 64.3°,

804+0 80—-0
= ;_ + 5 cos[2(64.3)] 4+ (—30) sin[2(64.3)] = —24.03 MPa

o

Shigley’s Mechanical Engineering Design



Example 3-4

Substituting ¢, = 64.3° into Eq. (3-9) again yields t = 0, indicating that —24.03 MPa
1s also a principal stress. Once the principal stresses are calculated they can be ordered
such that oy > o». Thus, oy = 104.03 MPa and 0o = —24.03 MPa.

Since for oy = 104.03 MPa, ¢, = —25.7°, and since ¢ 1s defined positive ccw in the
transformation equations, we rotate clockwise 25.7° for the surface containing o;. We
see in Fig. 3—11c¢ that this totally agrees with the semigraphical method.

To determine 7; and 7o, we first use Eq. (3—11) to calculate ¢;:

1 " 1 30
¢, = —tan~' [ =2 "5"’) — e (= — 19.3°. 109.3°
2 2Tyy 2(—50)

For ¢y = 19.3°, Egs. (3-8) and (3-9) yield

8040 80—0
o — T+ n cos[2(19.3)] + (—50) sin[2(19.3)] = 40.0 MPa
30 — 0

sin[2(19.3)] + (—=50) cos[2(19.3)] = —64.0 MPa

Shigley’s Mechanical Engineering Design



Example 3-4 Summary

! X
X'y 1 50,50
| . () ~— II
orientation
| o,
50 Eqsp
\ll'n
II'.
2 Ill
g =—2 |
Principal stress
orientation
Max shear
orientation




Problem 1

For each of the plane stress states listed below, draw a Mohr’s circle diagram properly labeled,
find the principal normal and shear stresses, and determine the angle from the x axis to ;. Draw
stress elements as in Fig. 3—11c and d and label all details.

(a) oy = 20kpsi, oy = —10Kkpsi, tyy = 8Kpsi cw

(b) oy = 16kpsi, oy = 9kpsi, 14y = Skpsi ccw

(¢) oy = 10kpsi, oy = 24 kpsi, 7y = 6kpsi ccw

(d) ox = —12Kpsi, oy = 22Kpsi, tyy = 12kpsi cw

Shigley’s Mechanical Engineering Design



(a)
20-10
C =
2

20+10
T2
R=+15?+8? =17 kpsi
o, =5+17 =22 kpsi
o, =5-17=-12 kpsi

=5 kpsi1

CD

=15 kpsi

1 8
?, =—tan1[—}:14 04" cw
2 15
7, =R =17 kps1

. =45 —14.04" =30.96" ccw




(b)

=210 15 5kpsi
2
CD = 162_9 = 3.5 kpsi

R=~5"+3.5> =6.10 kpsi
o =12.5+6.1=18.6 kpsi
o, =125-61=64kpsi -

1 _] 5 [s]
=—tan | — |=27.5 ccw
¢p 2 [3.5)

7, =R =06.10 kpsi

g =45 -275 =175 cw

6.4



()

oW

T
20 g s
cp-22—10_5 kpsi
2
R=~7"+6> =9.22 kpsi v
o, =17+9.22 =26.22 kps:
o, =17-9.22="7.78 kpsi (10, 65%)
Tn:cw X
1 one a7 :
¢p =—|90°+tan | — | |=69.7" ccw
2 6 69.7°

7, =R =9.22 kpsi1
¢ =69.7° —45 =247 ccw

24.7°
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(d)

ootz
>
CD=12;22=17kpsi

R=~17* +12* =20.81 kpsi
&, =5+20.81=25381 kpsi
&, =5-20.81=—-15.81 kpsi

1 . (1 .
¢5p=—[90 +tan (—ﬂ=72.39 oW cew| T

r, = R =20.81 kpsi1
¢ =72.39—-45=27.39"

27.39°

Ch
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Homework

For each of the plane stress states listed below, draw a Mohr’s circle diagram properly labeled,

find the principal normal and shear stresses, and determine the angle from the x axis to o;. Draw
stress elements as in Fig. 3—11c and d and label all details.

(a) ox = —8MPa, oy = 7TMPa, 1y, = 6 MPa cw
(b) ox =9MPa, oy = —6MPa, 1y = 3MPa cw
(c) oy = —4MPa, oy = 12MPa, 7,y = 7MPa ccw
(d) ox = 6MPa, oy = —5MPa, 1y = 8 MPa ccw

Shigley’s Mechanical Engineering Design



