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Mechanical Springs

Exert Force
Provide flexibility
. Store or absorb energy

Shigleydbs Mechanica



Helical Spring

Helical coll spring with round wire

Equilibrium forces at cut section anywhere in the body of the
spring indicates direct shear and torsion

10|1 Shigleydos Mechani ca



. Substitute terms ——

Stresses in Helical Springs

. Torsional shear and direct shear *F
- Additive (maximum) on inside fiber of

crosssection i
Tr F '
L —

Tmax = 7 + A

s

Tmax =T, 1T = FD/2,r =d/2, T=FD/2

J=md¥32 A=nd*/4 Fig. 10 16




Stresses in Helical Springs

SFD n 4F
T —
rd®  wd?

Factor out the torsional stress

d D
f?émi%

Define Spring Index ¢

f.f

Define Shear Stress Correction Factor

K =1 4= 11
2C 2C

Maximum shear stress for helical spring
SFD

Td3

T = K;

0-1)

(10-3)

(10-2)



Curvature Effect

. Stress concentration type of effect on inner fiber due to curvat

. Can be ignored for static, ductile conditions due to localized ct
working

- Can account for effect by replacisqwith Wah/ factoror
Ber gst r 2whgheaccountdor Foi direct shear and

curvature effect |
AC —1 0615

Ky = 10-4
w=1=—7t ¢ (10-4)
4C 42
Kﬁ'::4(‘_.3 (10-5)
8FD
T:KB “O_?}

d?

. Cancelling the curvature effect to isolate the curvature factor
Kp 2C (4C +2)

_ _ (10-¢)
K, 4C — 3)(2C + 1)

K, =



Deflection of Helical Springs

Use Castiglianods method to
U_T2!+F2!
- 2GJ  2AG

Substituting T = FD/2, | =xDN, J = nd*32, and A = nd*/4

F

4F?D’N  2F’DN

U =
d*G + d*G
_ dU B SFD3N N AFDN
YEOF T T atG 126
B SFD3N - Ly . 8FD3N oog
Y= TG 2 ) T T aAG (10-8)
d*G
k = (10-9) ~——>p—
8D3N

Fig. 10i 1a
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Ends of Compression Springs

(a) Plain end, right hand (¢) Squared and ground end,
left hand

(b) Squared or closed end, (d) Plain end, ground,
right hand left hand

Fig. 10i 2
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Formulas for Compression Springs With Different Ends

Tablel0i 1
Type of Spring Ends
Plain and Squared or Squared and
Ground Closed Ground
End coils, N, 0 | 2 2
Total coils, N, N, Ny 1 N+ 2 Ni;+ 2
Free length, L pN, + d p(N, + 1) pN, + 3d pN, + 2d
Solid 1ength, LS d(Nr <+ 1) dN{ d(Nt 25 1) dN{
Pitch, p (Lo — d)/N, Lo/(Ns + 1) (Lo — 3d)/N, (Lo — 2d)/N,

N_is the number of active coils

Shigleybs Mechani ca.



Set Removal

Set removabr presettings a process used in manufacturing a
spring to induce useful residual stresses.

- The spring is made longer than needed, then compressed to ¢
height, intentionally exceeding the yield strength.

. This operatiorsetshe spring to the required final free length.

- Yielding induces residual stresses opposite in direction to thos
iInduced in service.

10to 30 percent of the initial free length should be removed.

. Set removal is not recommended when springs are subject to
fatigue.



Critical Deflection for Stabllity

Buckling type of instability can occur in compression springs
when the deflection exceeds thwfical deflection y,,

C’ 1/2
Yer = LU(; {l _ (l — T3 ) } [10-10)
Aeff

L .« IS theeffective slenderness ratio

ol
Ao = Tﬂ (10-11)

a s theendcondition constantefined on the next slide
C, and C; are elastic constants

E

C =
LO2(E - G)

27%(E — G)
2G + E




End-Condition Constant

Theaterm in Eq. L0 11) is theendcondadition constant.

It accounts for the way in which the ends of the spring are
supported.

Values are given in TablEdi 2.

End Condition Constant «

Spring supported between flat parallel surfaces (fixed ends) 0.5
One end supported by flat surface perpendicular to spring axis (fixed);

other end pivoted (hinged) 0.707
Both ends pivoted (hinged) 1
One end clamped; other end free 2

*Ends supported by flat surfaces must be squared and ground.

Tablel10i 2
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Absolute Stability

. Absolute stability occurs when, in E4.( 10),
Cjllz >1

. This results in the condition for absolute stability

7D [2(E —G)]'?
Lo < = [ & )] (10-12)
oY 2(_; -+ E
For steels, this turns out to be
D
L(} < 2.63— [10—1 3}

o



Some Common Spring Steels

. Hard-drawn wire 0.60-0.70C)
BCheapest generalurpose

BUse only where life, accuracy, and deflection are not too
Important

. Oll-tempered wire@.60-0.700)

BGeneralpurpose

BHeat treated for greater strength and uniformity of propertie:
BOften used for larger diameter spring wire

- Music wire 0.80-0.950)

BHigher carbon for higher strength

BBest, toughest, and most widely used for small springs
BGood for fatigue



Some Common Spring Steels

. Chromevanadium
BPopular alloy spring steel

BHigher strengths than plain carbon steels
BGood for fatigue, shock, and impact

. Chromesilicon

BGood for high stresses, long fatigue life, and shock



Strength of Spring Materials

. With small wire diameters, strength is a function of diameter.

- A graph of tensile strength vs. wire diameter is almost a straig
line on loglog scale.

- The equation of this line is
Sut = 2 (10-14)

¢ ;’ m

whereA is the intercept andzis the slope.

- Values ofA andmfor common spring steels are given in Table
10i 4.



Constants for Estimating Tensile Strength

A
Surzd—m “0_]4)
Relative
ASTM Exponent Diameter, A, Diameter, A, Cost
Material No. m in kpsi - in™ mm MPa - mm™ of Wire
Music wire* A228 0.145 0.004-0.256 201 0.10-6.5 2211 2.6
OQ&T wire® A229 0.187 0.020-0.500 147 0.5-12.7 1855 1.3
Hard-drawn wire* A227 0.190 0.028-0.500 140 0.7-12.7 1783 1.0
Chrome-vanadium wire®  A232 0.168 0.032-0.437 169 0.8-11.1 2005 3.1
Chrome-silicon wire! A401 0.108 0.063-0.375 202 1.6-9.5 1974 4.0
302 Stainless wire” A313 0.146 0.013-0.10 169 0.3-2.5 1867 7.6-11
0.263 0.10-0.20 128 2.5-5 2065
0.478 0.20-0.40 90 5-10 2911
Phosphor-bronze wire**  B159 0 0.004-0.022 145 0.1-0.6 1000 8.0
0.028 0.022-0.075 121 0.6-2 913
0.064 0.075-0.30 110 2-17.5 932
Tablel0i 4
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Estimating Torsional Yield Strength

. Since helical springs experience shear stress, shear yield stre
IS needed.

If actual data is not available, estimate from tensile strength
.- Assume yield strength is betwe@®90% of tensile strength
0.65,¢ §, ¢0.95

- Assume the distortion energy theory can be employed to relat
the shear strength to the normal strength.

S,,= 0577,

. This results In

0.358,; < 8y <0.528,, (10-15)



Mechanical Properties of Some Spring Wires (Tabl& (i 5)

Material

Elastic Limit,

Percent of S, ;
Tension Torsion

Diameter

d, in

Music wire A228

HD spring A227

Oil tempered A239
Valve spring A230
Chrome-vanadium A231
A232

Chrome-silicon A401
Stainless steel

A313*

17-7PH

414

420

431
Phosphor-bronze B159
Beryllium-copper B197

Inconel alloy X-750

65-75

60-70

85-90
85-90
88-93
88-93
85-93

65-75
75-80
65-70
65-75
72-76
75-80
70

75

65-70

45-60

45-55

45-50
50-60
65-75

65-75

45-55
55-60
42-55
45-55
50-55
45-50
50

50-55
40-45

<0.032
0.033-0.063
0.064-0.125
>0.125
<0.032
0.033-0.063
0.064-0.125
>0.125

29.3
29.0
28.5
28.0
28.8
28.7
28.6
28.5
28.5
29.5
293
29.5
29.5

28
29.5
29
29
30
15
17
19
31

203.4
200

196.5
193

198.6
197.9
197.2
196.5
196.5
203.4
203.4
203.4
203.4

193
208.4
200
200
206
103.4
117.2
131
21537

12.0
11.85
11.75
11.6
11.7
11.6
11.5
11.4
11.2
11.2
11.2
11.2
11.2

10
11
11.2
11.2
11.5
6
6.5
T3
11.2

Shigleyds

82.7
81.7
81.0
80.0
80.7
80.0
79.3
78.6
172
712
112
712
77.2

69.0
75.8
71.2
Ti2
793
41.4
44.8
50.3

772
Mechani ca.



Maximum Allowable Torsional Stresses

Table 10-6

Maximum Allowable
Torsional Stresses for
Helical Compression
Springs in Static
Applications

Source: Robert E. Joerres,
“Springs,” Chap. 6 in Joseph
E. Shigley, Charles R. Mischke,

and Thomas H. Brown, Jr. (eds.),

Standard Handbook of Machine
Design, 3rd ed., McGraw-Hill,
New York, 2004.

Maximum Percent of Tensile Strength

Before Set Removed
(includes Kw or Kg)

Material

Music wire and cold- 45
drawn carbon steel

Hardened and tempered 50
carbon and low-alloy
steel

Austenitic stainless 35
steels

Nonferrous alloys 35

After Set Removed
(includes Kj)

60-70

65-75

55-65

55-65

Shigleyds

Mechani ca.



Example 10/ 1

A helical compression spring is made of no. 16 music wire. The outside coil diam-
eter of the spring is % in. The ends are squared and there are 12% total turns.

(a) Estimate the torsional yield strength of the wire.

(b) Estimate the static load corresponding to the yield strength.

(c) Estimate the scale of the spring.

(d) Estimate the deflection that would be caused by the load in part (b).

(e) Estimate the solid length of the spring.

(/) What length should the spring be to ensure that when it is compressed solid and
then released, there will be no permanent change in the free length?

(g) Given the length found in part (f), is buckling a possibility?

(h) What is the pitch of the body coil?

Shigleybs Mechani ca.



Example 10/ 1

(a) From Table A-28, the wire diameter is d = 0.037 in. From Table 10-4, we find
A =201 kpsi-in™ and m = 0.145. Therefore, from Eq. (10-14)

A 201
dm ~ 0.03701%

Sut = — 324 kpsi

Then, from Table 10-6,
Ssy = 0.458,, = 0.45(324) = 146 kpsi

Shigleydbs Mechanica



Example 10/ 1

(b) The mean spring coil diameter is D = 17—6 — 0.037 = 0.400 in, and so the spring
index 1s C = 0.400/0.037 = 10.8. Then, from Eq. (10-6),

_4C 42 4(10.8) +2
T 4C -3 4(10.8) -3

Kp = 1.124

Now rearrange Eq. (10-7) replacing = with S, and solve for F:

g Td’Sy _ 7(0.037°)146(10°)

= = = 6.46 Ibf
8KpD 8(1.124) 0.400

Shigleydbs Mechanica



Example 10/ 1

(¢) From Table 10-1, N, = 12.5 — 2 = 10.5 turns. In Table 10-5, G = 11.85 Mpsi,
and the scale of the spring is found to be, from Eq. (10-9),

d*G B 0.0374 (11.85)10°

k = = = 4.13 Ibf/in
8D3N, 8(0.400%)10.5

F 646
- — = —  =1.561
(d) Y = T a3 m

Shigleydbs Mechanica



Example 10/ 1
(¢) From Table 10-1,

Ly = (N + 1)d = (12.5 4 1)0.037 = 0.500 in

(f) Lo=y+L; =1564+0.500 =2.06 in.
(g) To avoid buckling, Eq. (10-13) and Table 10-2 give

D 0.400
Lo <2.63— =2.63——
o 0.5

Mathematically, a free length of 2.06 in 1s less than 2.10 in, and buckling is unlikely.
However, the forming of the ends will control how close « is to 0.5. This has to be
investigated and an inside rod or exterior tube or hole may be needed.

(h) Finally, from Table 10-1, the pitch of the body coil is

_ Lo—3d _ 2.06—3(0.037)
- N, 10.5

=2.10 n

p = 0.186 in

Shigleybs Mechani ca.



Helical Compression Spring Design for Static Service

Limit the design solution space by setting some practical limits
Preferred range for spring index
4<C<12 (10-18)

Preferred range for number of active coils
3<Ng 215 (10-19)



Helical Compression Spring Design for Static Service

. To achieve best linearity of spring constant, preferred to limit
operating force to the centrdb% of the forcedeflection curve
betweenF=0andF= F,

- This limits the maximum operating force £p,, O7/8 F,

. Define fractional overrun to closu@as 3where

F‘fz(l‘l_é:”:mnx (10_]7)

. This leads to

7
F:-: — (1 ‘|‘<§)an}( — (l +E) (g)Fi

. Solving the outer equality far 3=1/7=0.143110.15
. Thus, it is recommended that
£ >0.15 (10-20)



Summary of Recommended Design Conditions

. The following design conditions are recommended for helical
compression spring design for static service

4<C <12 (10-18)
3<N, <15 (10-19)
& >0.15 (10-20)
ng > 1.2 (10-21)

whereri,is the factor of safety at solid height.



Figure of Merit for High Volume Production

For high volume production, the figure of merb/) may be the
cost of the wire.
. The fomwould be proportional to the relative material cost,

weight density, and volume
yt2d*N, D
fom = —(relative material cost):l {4 : (10-22)




Design Flowchart for Static Loading

Choose d
Over-a-rod Free In-a-hole
As-wound or set As-wound Set removed As-wound or set
D=d, 4+d+allow S =const(A)/d"’ S, =0.65Ad™ D=d, .—d—allow
C_za_;s+,\/ 2a - Y 3a b S,ymd’
4B 48 4B N Sn (1 +&)F, .,
S, 8(1 +&F .,
o= TS} B= -
s md
D=Cd
|

|

Continue on next slide

Shigleybs Mechani ca.



Design Flowchart for Static Loading

Continued from previous slide

'

C=D/d

Kp=(4C +2)/(4C - 3)
7= K8(1 +§)F_ D/(md”)
ng=S;,/7,
OD=D+d
ID=D-d

N.=Gd%,_ /(8D’F, )

Ymax
N,: Table 10-1
L Table 10-1
Ly: Table 10-1
(Ly), =2.63D/a

fom = —(rel. cost) ywr*d*N, D/4

Shigleydbs Mechanica



Design Flowchart for Static Loading

Print or display: d, D, C, OD, ID,N,,N,, L, L,, (Ly).,, i, fom
Build a table, conduct design assessment by inspection
Eliminate infeasible designs by showing active constraints

Choose among satisfactory designs using the figure of merit

Shigleybs Mechani ca.



Finding Spring Index for As-Wound Branch

- In the design flowchart, for the branch with freeywamind
condition, the spring index is found as follows:

- From Egs. 10r 3) and 10 17),

55, o 8F.D  4C +2 [8(1 + £) Fﬂm(:}

. BT T ac =3 d? @)
' ‘STTT
Let LD b)
Ny
8 1 3 FITIHK
B — (I +¢) B

Td?

. Substituting ) and ) into (8 yields a quadratic ii&.

Cziafﬁ+‘/(2a—ﬁ)" R (10-23)

4p ) 4



Example 10 2

A music wire helical compression spring is needed to support a 20-1bf load after being
compressed 2 in. Because of assembly considerations the solid height cannot exceed
[ in and the free length cannot be more than 4 in. Design the spring.

Solution
The a priori decisions are

« Music wire, A228; from Table 104, A =201 000 psi-in"; m = 0.145; from
Table 10-5, E = 28.5 Mpsi, G = 11.75 Mpsi (expecting d > 0.064 in)

« Ends squared and ground

» Function: Finax = 20 Ibf, ymax = 2 in

« Safety: use design factor at solid height of (n5)q = 1.2

« Robust linearity: § = 0.15

« Use as-wound spring (cheaper), S5, = 0.455,, from Table 10-6

« Decision variable: d = 0.080 in, music wire gage #30, Table A-28. From Fig. 10-3
and Table 10-6,

201 000
0.08(00-145

Ssy = 0.45 = 130 455 psi

Shigleydbs Mechani ca.



Example 10 2
From Fig. 10-3 or Eq. (10-23)

S., 130455
a= — — 108 713 psi
Hy 1.2
8(1 +&)F 8(1 4+ 0.15)20
p= U+ ma  SUHO0D)D_ 505 4
d? 7(0.0802)
2(108 713) — 9151.4 2(108 713) — 9151.47%  3(108 713
] ) e ) _ X ) — 1053
4(9151.4) 4(9151.4) 4(9151.4)
D = Cd = 10.53(0.080) = 0.8424 in
4(10.53) + 2
— = 1.128
B~ 4(1053) -3
(1 +0.15)20(0.8424
r.=1.128 (2 +0.15)2 ) _ 108 700 psi
7(0.080)3
130 445
ng = =1.2

Shigleybs Mechani ca.



Example 10 2

OD = 0.843 4+ 0.080 = 0.923 in

~ 11.75(10%)0.080%(2)
@ 8(0.843)320

N, = 10.05 4+ 2 = 12.05 total turns
L, = 0.080(12.05) = 0.964 in
Lo=0.964 + (1 +0.15)2 = 3.264 in
(L)e = 2.63(0.843/0.5) = 4.43 in
fom = —2.672(0.080)%212.05(0.843) /4 = —0.417

= 10.05 turns

Shigleydbs Mechanica



Example 10 2

Repeat the above for other wire diameters and form a table (easily accomplished with
a spreadsheet program):

d 0.063 0.067 0.071 0.075 0.080 0.085 0.090 0.095

D 0.391 0.479 0.578 0.688 0.843 1.017 1.211 1.427
C 6.205 7.153 8.143 9.178  10.53 11.96 13.46 15.02
OD 0.454 0.546 0.649 0.763 0.923 1.102 1.301 1.522
N, 39.1 26.9 19.3 14.2 10.1 1.3 54 4.1

L 2.587 1.936 1.513 1.219 0.964 0.790 0.668 0.581
Lo 4.887 4.236 3.813 3.519 3.264 3.090 2.968 2.881
(Loer - 2.06 2.52 3.04 3.62 4.43 5.35 6.37 7.51
Ny 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
fom -—-0409 —-0399 —-0.398 —-0404 —-0417 —-0438 —-0467 —0.505

Shigleybs Mechani ca.



Example 10 2

Now examine the table and perform the adequacy assessment. The shading of the table
indicates values outside the range of recommended or specified values. The spring
index constraint 4 < C < 12 rules out diameters larger than 0.085 in. The constraint
3 < N, < 15 rules out wire diameters less than 0.075 in. The L; < | constraint rules
out diameters less than 0.080 in. The Ly < 4 constraint rules out diameters less than
0.071 in. The buckling criterion rules out free lengths longer than (Lg)¢r, Which rules
out diameters less than 0.075 in. The factor of safety n, is exactly 1.20 because the
mathematics forced it. Had the spring been in a hole or over a rod, the helix diameter
would be chosen without reference to (n;),4. The result is that there are only two springs
in the feasible domain, one with a wire diameter of 0.080 in and the other with a wire
diameter of 0.085. The figure of merit decides and the decision is the design with 0.080
in wire diameter.

Shigleybs Mechani ca.



Example 101 3

Design a compression spring with plain ends using hard-drawn wire. The deflection
is to be 2.25 in when the force is 18 Ibf and to close solid when the force is 24 Ibf.

Upon closure, use a design factor of 1.2 guarding against yielding. Select the small-
est gauge W&M (Washburn & Moen) wire.

Solution

Instead of starting with a trial wire diameter, we will start with an acceptable spring

index for C after some preliminaries. From Eq. (10-14) and Table 10-6 the shear
strength, in kpsi, is

A
Ssy = 0.458,; = 0.45 (d_m) (1)

Shigleybs Mechani ca.



Example 101 3

The shear stress 1s given by Eq. (10-7) replacing v and F with 1, and Fpax, respec-
tively, gives

8 Finax D B
Tmax = Kp d3 — AR <d? (2)
where the Bergstrisser factor, Kp, from Eq. (10-5) is
4C + 2
= 3
B= 173 (3)

Dividing Eq. (1) by the design factor n and equating this to Eq. (2), in kpsi, gives

0.:5 ( A ) _ K, BFmaxC(m_3) (4)

Shigleybs Mechani ca.



Example 10/ 3

For the problem Fp,x = 24 Ibf and n = 1.2. Solving for d gives
KnC 1/(2—m)
d= (0.163%) (5)

Try a trial spring index of C = 10. From Eq. (3)

4100 +2

— = 1.135
4(10) -3

B

From Table 104, m = 0.190 and A = 140 kpsi - in®"". Thus, Eq. (5) gives

1.135(10)\ /@090
d = (0.163 ) — 0.09160 in

140

Shigleydbs Mechanica



Example 101 3

From Table A-28, a 12-gauge W&M wire, d = 0.105 5 in, is selected. Checking the
resulting factor of safety, from Eq. (4) with Fpax = 24 Ibf

Ad?m
KzC

n =7.363 (6)

140(0.105 52019
_ 736321 ) 155
1.135(10)

which is pretty conservative. If we had selected the 13-gauge wire, d = 0.091 5 in,
the factor of satety would be n = 1.198, which rounds to 1.2. Taking a little liberty
here we will select the W&M 13-gauge wire.

Shigleybs Mechani ca.



Example 101 3

To continue with the design, the spring rate is

LS LR
=3 =225 °c/m

From Eq. (10-9) solving for the active number of coils

d*G dG  0.091 5(11.5)106

N, = = =
8kD3  8kC3 8(8)103

= 16.4 turns

This exceeds the recommended range of 3 < N, < 15. To decrease N, increase C.
Repeating the process with C = 12 gives Kgp = [.111 and d = 0.100 1 in. Selecting
a 12-gauge W&M wire, d = 0.105 5 in. From Eq. (6), this gives n = 1.32, which is
acceptable. The number of active coils is

dG  0.1055(11.5)10°

— T YOI — 10.97 = 11 turns

Ng

Shigleybs Mechani ca.



Example 101 3

which 1s acceptable. From Table 10-1, for plain ends, the total number of coils is
Ny = N, = 11 turns. The deflection from free length to solid length of the spring is

given by
Fonax 24

= —=31In

Ys = 7% 3

From Table 10-1, the solid length is

Ly;=d(N;+1)=0.1055(11 +1) = 1.266 in
The free length of the spring is then
Lo=Ls+ y, =1.266+3 =4.266in
The mean coil diameter of the spring is
D =Cd =12(0.1055) = 1.266 in

and the outside coil diameter of the spring is OD =D +d = 1.266 +0.105 5 =
1.372 in.

Shigleybs Mechani ca.



Example 10/ 3
To avoid buckling, Eq. (10-13) gives

1632 — 2631200 _ 550
S T Y66 T

From Table 10-2, the spring is stable provided it is supported between either fixed-
fixed or fixed-hinged ends.
The final results are:

W&M wire size: 12 gauge, d = 0.105 5 in
Outside coil diameter: OD = 1.372 in

Total number of coils: N; = 11 turns with plain ends
Free length: Lo = 4.266 in

Shigleydbs Mechanica



Critical Frequency of Helical Springs

When one end of a spring
Is displaced rapidly, a

wave called &spring surge 4
travels down the spring. &

If the other end is fixed, NG
the wave can reflect back i

If the wave frequencyis = .
near the natural frequenczqﬁ;__,'gr 9 &
of the spring, resonance . §
may occur resultingin [ KW
extremely high stresses. = =
Catastrophic failure may e
occur, as shown in this

valve-spring from an over

revved engine.




Critical Frequency of Helical Springs

. The governing eqguation is the wave equation
9% u W 0% u
ax2  kgl? or?

where k = spring rate

(10-24)

¢ = acceleration due to gravity
[ = length of spring
W = weight of spring

x = coordinate along length of spring

u = motion of any particle at distance x

Shigleybs Mechani ca.



Critical Frequency of Helical Springs

. The solution to this equation is harmonic and depends on the
physical properties as well as the end conditions.

- The harmonic, natural, frequencies for a spring placed betwee
two flat and parallel plates, in radians per second, are

ko
cu:m:rﬁ—‘{’, m=1,2,3,...

In cycles per second, or hertz,
| [kg
II| O

— /== 10-25
2V w | )

[ =

. With one end against a flat plate and the other end free,

o1 [kg



Critical Frequency of Helical Springs

. The weight of a helical spring is

d* 2d* D Ng)
DNy () = — (10-27)

W= ALy =
= 4

. The fundamental critical frequency should be greater 1bda
20times the frequency of the force or motion of the spring.

If necessary, redesign the spring to increéasedecreasélV.



Fatigue Loading of Helical Compression Springs

Zimmerli found that size, material, and tensile strength have n
effect on the endurance limits of spring steels in sizes 8i8er
In (10 mm).

Testing found the endurance strength components for infinite |
to be

Unpeened:
Ssa = 35 kpsi (241 MPa) Ssm = 35 kpsi (379 MPa) (10-28)
Peened:

Ssa = 57.5 kpsi (398 MPa) Sem = 77.5 kpsi (534 MPa) (10-29)

These constant values are used with Gerber or Goodman failt
criteria to find the endurance limit.



Fatigue Loading of Helical Compression Springs

For example, with an unpeened spring with= 2115 kpsi, the
Gerber ordinate intercept for shear, from B342), is

S 35
S¢ = - — = ~ = 37.5 kpsi

1 S \? 1 55 )3
S, 211.5

For the Goodman criterion, it would I$g,= 47.3 kpsi.

Each possible wire size would change the endurance limit sinc
S,,Is a function of wire size.




Fatigue Loading of Helical Compression Springs

It has been found that for polished, nefoe, cylindrical
specimens subjected to torsional shear stress, the maximum
alternating stress that may be imposed is constant and
iIndependent of the mean stress.

Many compression springs approach these conditions.
. This failure criterion is known as th&nes failure criterion.



Torsional Modulus of Rupture

. The torsional modulus of ruptutg ,will be needed for the
fatigue diagram.

Lacking test data, the recommended value is
Ssu = 0.67S,; (10-30)



Stresses for Fatigue Loading

From the standard approach, the alternating and midrange for
are
Fmax - me

F,= (10-31q]
2

F, max F, min
F, = —max " 10-31b)

-2

The alternating and midrange stresses are

8F,D

T, = Kp—— (10-32)
d-
8FyuD

Td3



Example 10/ 4

An as-wound helical compression spring, made of music wire, has a wire size of 0.092
in, an outside coil diameter of 1—96 in, a free length of 4% in, 21 active coils, and both ends
squared and ground. The spring is unpeened. This spring is to be assembled with a
preload of 5 Ibf and will operate with a maximum load of 35 Ibf during use.

(a) Estimate the factor of safety guarding against fatigue failure using a torsional
Gerber fatigue failure criterion with Zimmerli data.

(b) Repeat part (a) using the Sines torsional fatigue criterion (steady stress compo-
nent has no effect), with Zimmerl data.

(c) Repeat using a torsional Goodman failure criterion with Zimmerli data.

(d) Estimate the critical frequency of the spring.
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The mean coil diameter is D = 0.5625 — 0.092 = 0.4705 in. The spring index is C =
D/d =0.4705/0.092 = 5.11. Then

4C +2  4(5.11) +2

Kp = — = 1.287
P70 -3 7 45.11) -3
From Eqgs. (10-31),
35-5 3545
F, = = 15 Ibf Fn = ;= 20 Ibf
The alternating shear-stress component is found from Eq. (10-32) to be

8F. D 8(15)0.4705 . |
— (1.287 10-3) = 29.7 k
- S aaoys U9 PSI

7, = Kp

Equation (10-33) gives the midrange shear-stress component

8F,,D .
nd3 7(0.092)3

(1073) = 39.6 kpsi
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Example 10/ 4

From Table 104 we find A = 201 kpsi-in"™ and m = 0.145. The ultimate tensile
strength is estimated from Eq. (10-14) as

A 201
dm o 0_092(1145

Sur = = 284.1 kpsi

Also the shearing ultimate strength is estimated from
Ssu = 0.67S,; = 0.67(284.1) = 190.3 kpsi
The load-line slope r = t,/t,, = 29.7/39.6 = 0.75.
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Example 10/ 4
(a) The Gerber ordinate intercept for the Zimmerlh data, Eq. (10-28), 1s

S Ssa 5 38.2 kpsi
o — = = 38. |
[ — (S, /82 1—(55/190.3)2 P

The amplitude component of strength S;,, from Table 6-7, p. 307, is
r2s? 25.\? |

Sea = — | -1 1 -
PAYS +\/ + (P'Sm) J

0.752190.32 2(38.2) 7
_ 14 /1 — 35.8 kpsi
2(38.2) +\/ + [0.75(190.3)} £

and the fatigue factor of safety ny 1s given by
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() The Sines failure criterion ignores S;,, so that, for the Zimmerli data with S;, =
35 kpsi,

Ssa 35

— = 1.18
T, 29.7

nf:
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Example 10/ 4

(¢) The ordinate intercept S5, for the Goodman failure criterion with the Zimmerli
data is

. Ssa B 35
= (Sem/Se) 1 —1(55/190.3)

The amplitude component of the strength S, for the Goodman criterion, from
Table 6-6, p. 307, 1s

= 49.2 kpsi

rSeSe 0.75(49.2)190.3
T Seu+ See  0.75(190.3) + 49.2

= 36.6 kpsi

The fatigue factor of safety is given by

S¢e 366
ng = = = 1.23
T4 29.7
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(d) Using Eq. (10-9) and Table 10-5, we estimate the spring rate as
d*G B 0.092*[11.75(10%)]

k = = = 48.1 Ibf/i
SD3N, 8(0.4705)321 i
From Eq. (10-27) we estimate the spring weight as
2 2
0.092-)0.4705(21)0.284
W= I ) - D = 0.0586 Ibf
and from Eq. (10-25) the frequency of the fundamental wave is

B i [48.1(386)

1/2
£, = — 281 Hz
2] 7 0.0386

[f the operating or exciting frequency is more than 281/20 = 14.1 Hz, the spring may
have to be redesigned.
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Example 10/ 5

A music wire helical compression spring with infinite life is needed to resist a
dynamic load that varies from 5 to 20 Ibf at 5 Hz while the end deflection varies from
% to 2 in. Because of assembly considerations, the solid height cannot exceed 1 in
and the free length cannot be more than 4 in. The springmaker has the following wire
sizes in stock: 0.069, 0.071, 0.080, 0.085, 0.090, 0.095, 0.105, and 0.112 in.
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Example 10i 5

The a priori decisions are:

« Material and condition: for music wire, A =201 kpsi-in", m =0.145, G =
11.75(10%) psi; relative cost is 2.6

« Surface treatment: unpeened

« End treatment: squared and ground

« Robust linearity: & = 0.15

« Set: use in as-wound condition

« Fatigue-safe: ny = 1.5 using the Sines-Zimmerl fatigue-failure criterion

« Function: Fpj = 5 Ibf, Fpax = 20 Ibf, ypin = 0.5 in, ymax = 2 1n, spring operates
free (no rod or hole)

« Decision variable: wire size d

The figure of merit will be the volume of wire to wind the spring, Eq. (10-22). The
design strategy will be to set wire size d, build a table, inspect the table, and choose
the satisfactory spring with the highest figure of merit.
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Set d =0.112 in. Then

20-5 2045
I = 5 = 7.5 Ibf i — —5 = 12.5 Ibf

F 20
- - = 10 1bf/in

H-u
I
I

201
Sur = 0.1120-145

= 276.1 kpsi

Ssu = 0.67(276.1) = 185.0 kpsi

Ssy = 0.45(276.1) = 124.2 kpsi

Shigleydbs Mechanica



Example 10i 5

From Eq. (10-28), with the Sines criterion, S, = S, = 35 kpsi. Equation (10-23)
can be used to determine C with S,,, n¢, and F, in place of Sy, ng, and (1 + &§)Fpax,

respectively. Thus,

Sse 35000 _
a = = = 23 333 psi

Hf 1.5

8F, 8(7.5)

_ Sfa _ — 1522.5 psi
P= @ = 700D pSt

_ 2033331525  [[2(23 333) — 15225 ?3(23333) 003
T 4(15225) 4(1522.5) 4(1522.5) —
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Example 10i 5
D =Cd = 14.005(0.112) = 1.569 in

Fo = (1 +&)Fpax = (1 +0.15)20 = 23 Ibf

d*G B 0.112%(11.75)(108)
8D3k 8(1.569)310

N, = — 5.98 turns

N =N,+2=598+2="7.98 turns
L; =dN, =0.112(7.98) = 0.894 in

F; 23 .
Lo=L+ T = 0.894 + 0= 3.194 in

ID=1.569 —-0.112 = 1.457 in

OD =1.569 4+ 0.112 = 1.681 in
vs=Lo—L; =3.194 — 0.894 = 2.30 in

2.63D 963 (1.569)
a 05

(Lﬂ)cr = = 8.253 1n
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Example 10/ 5

_ 4(14.005) + 2
~ 4(14.005) — 3

B = 1.094

w _ T2d*DNay _ 720.1122(1.569)5.98(0.284)

] ]
O Y T
o =05y =5= =03 50825 = -

= 0.0825 Ibf
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Example 10i 5

8F, D 8(7.5)1.569 _
—K — 1.094 — 23334
R A I pst
B, 2.5

Ty = r{,? =23 334? = 38 890 psi

a

F 23 .
s =Tap = 23 334ﬁ = 71 560 psi

o

_ Ssa _35000_15
M= T334
B Ssy B 124 200 _ 174
s T 560
fom = —(relative material cost)72d*N, D /4

= —2.67%(0.112%)(7.98)1.569/4 = —1.01
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Inspection of the results shows that all conditions are satisfied except for4 < C < 12.
Repeat the process using the other available wire sizes and develop the following table:

0.071 0.080

D 0.297 0.332 0.512 0.632 0.767 0919 1.274 1.569
ID 0.228 0.261 0.432 0.547 0.677 0.824 1.169 1.457
OD 0.366 0.403 0.592 0.717 0.857 1.014 1.379 1.681
C 4.33 4.67 6.40 7.44 8.53 9.67 12.14 14.00
Na 127.2 102.4 44.8 30.5 21.3 154 8.63 6.0
Le 8.916 7.414 3.740 2.750 2.100 1.655 [.116 0.895
Lo 11.216 9.714 6.040 5.050 4.400 3.955 3416 3.195
(Lo)er 1.562 1.744 2.964 3.325 4.036 4.833 6.703 8.250
ng [.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
g [.86 1.85 1.82 1.81 1.79 1.78 1.75 1.74
In 87.5 89.7 96.9 99.7 101.9 103.8 106.6 108

fom —1.17 —1.12 —-0983 —-0948 —-0930 —-0927 —-0958 —1.01
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Example 10i 5
The problem-specific inequality constraints are

L; <1in

Lo<4 in

f» = 5(20) = 100 Hz

The general constraints are
3<N, <15
C <

4<C <12
(Lo)er > Lo

We see that none of the diameters satisfy the given constraints. The 0.105-in-diameter
wire is the closest to satisfying all requirements. The value of C = 12.14 1s not a
serious deviation and can be tolerated. However, the tight constraint on Lg needs to be
addressed. If the assembly conditions can be relaxed to accept a solid height of 1.116 in,
we have a solution. If not, the only other possibility is to use the 0.112-in diameter
and accept a value C = 14, individually package the springs, and possibly reconsider
supporting the spring in service.
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Extension Springs

. Extension springs are similar to compression springs within th
body of the spring.

- To apply tensile loads, hooks are needed at the ends of the
springs.

.- Some common hook types:

S~ v

(a) Machine half loop—open (b) Raised hook

O+l © i

(¢) Short twisted loop (d) Full twisted loop
Fig. 105

J

N

L/
===

Y



Stress in the Hook

In a typical hook, a critical stress location is at pgintvhere
there is bending and axial loading.

16D 4
=F [ (K 10-34
oA [( )A — + erz] ( )
(K) , Is a bending stressorrection factor for curvature
402 - Cl — 1 2,-"]
K = ] C T — —
(K)a € -1 I y (10-35)
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Stress in the Hook

Another potentially critical stress location is at pdihtwvhere

there is primarily torsion.
8FD

= (K 10-36
5 = (K)p—s3 ( )
(K)zlIs a stresgorrection factor for curvature.
462 — 1 2!‘2
K)p = Cr = —= 10-37
(K)p 1C, — 4 2 7 ( )
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An Alternate Hook Design

- This hook design reduces the coll diameter at péint

Shigleydbs Mechanica



Closewound Extension Springs

Extension springs are often made with coils in contact with on
another, called/osewound

Including some Initial tension in clos®ound springs helps hold
the free length more accurately.

- The loaddeflection curve is offset by this initial tensién

F F =F; +ky (10-38)

¥ =

Fig. 10 7 (@)



Terminology of Extension Spring Dimensions

The free length is measured inside the end hooks.
Lo=2(D—d)+ (Ny+1)d = (2C — 1 + Np)d (10-39)

The hooks contribute to the spring rate. This can be handled
obtaining an equivalent number of active coills.

G
Ng = Np + —= (10-40)
E
e Free length =
G Lengthof Outside
P body g —>| diameter [
Wire /\ (=
: N
e / \ Inside / \
-~ - . 4
\—/ / diameter \ /
_ Hook _ _ Loop _ _ 3| Mean |
“length ™ “length diameter

Fig. 101 7 ()



Initial Tension in Close-Wound Springs

Initial tension is created
by twisting the wire as it
IS wound onto a mandre

When removed from the
mandrel, the initial
tension is locked in
because the spring cani
get any shorter.

The amount of initial
tension that can routine|
be incorporated is show

The two curves boundin
the preferred range is
given by
33 500
exp(0.105C)

+ 1000 (4 —

300
275 — Difficult 40
to attain
250 — T
T — 35
225 — R E
3£ £
5 E 200 Available upon 30 EJ =
= special request o =
& = fr inemak S Z
é £ 175 - rom springmaker . é 2
- S ; =
52 150 |- =
7 -5 L=
= B 20 = 2
g’ E 125 - Preferred E E
5 § range £ ?
=9 100 - s B8
75 —
Difficult 10
50 — to control
75 I S A A N NN AN I - S
6 8 10 12 14 16
Index — » Flg 10i 7¢
C -3\ .
— | psi (10-41)
6.)



Guidelines for Maximum Allowable Stresses

Recommended maximum allowable stresses, corrected for
curvature effect, for static applications is given in Téltle;.

Tablel0i 7
Percent of Tensile Strength

In Torsion In Bending
Materials Body End End

Patented, cold-drawn or 45-50 40 75
hardened and tempered

carbon and low-alloy

steels

Austenitic stainless 35 30 55
steel and nonferrous
alloys

This information is based on the following conditions: set not removed and low
temperature heat treatment applied. For springs that require high initial tension,
use the same percent of tensile strength as for end.
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Example 10/ 6

A hard-drawn steel wire extension spring has a wire diameter of 0.035 in, an outside
coil diameter of 0.248 in, hook radii of r1 = 0.106 1n and r» = 0.089 in, and an initial
tension of 1.19 Ibf. The number of body turns is 12.17. From the given information:
(a) Determine the physical parameters of the spring.

(b) Check the initial preload stress conditions.

(c) Find the factors of safety under a static 5.25-1bf load.

Solution
(a) D =0D —d=0248 — 0.035 = 0213 in
D 0.213
= — = — = 06.086
d 0.035

4C +2  4(6.086) 42

Kp = —
B=4C =3 7 4(6.086) — 3

= 1.234
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Example 10/ 6

Eq. (10-40) and Table 10-5:
No=Np+G/E = 12174+ 11.6/28.7 = 12.57 turns

_d*G 0.035%(11.6)10°
~ 8D3N,  8(0.2133%)12.57

= 17.91 Ibt/in

Eq. (10-9): k

Eq. (10-39): Lo=Q2C — 1+ Np)d =1[2(6.086) — 1 +12.17]0.035 = 0.817 in
The deflection under the service load is

Foax —F;  5.25 - 1.19

_ _ —0.227 ;
— 3 17.91 i

where the spring length becomes L = Lo+ y = 0.817 + 0.227 = 1.044 in.
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Example 10/ 6

(b) The uncorrected initial stress is given by Eq. (10-2) without the correction factor.

That 1s,
8F; D B 8(1.19)0.213(1073)

(Ti Juncorr = xd3 :r({].[}353)

= 15.1 kpsi

The preferred range is given by Eq. (10—41) and for this case is

33500 C -3
exp(0.105C) 6.5
33 500 6.086 — 3
— + 1000 { 4 —
exp[0.105(6.086)] 6.5

= 17 681 £ 3525 = 21.2, 14.2 kpsi

Thus, the initial tension of 15.1 kpsi is in the preferred range.
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Example 10/ 6

Thus, the initial tension of 15.1 kpsi is in the preferred range.
(c) For hard-drawn wire, Table 104 gives m = 0.190 and A = 140 kpsi - in”. From

Eq. (10-14)
A B 140
dm R 0'{]350.190

For torsional shear in the main body of the spring, from Table 10-7,
Ssy = 0.458,, = 0.45(264.7) = 119.1 kpsi
The shear stress under the service load is

 8KpFumD  8(1.234)5.25(0.213)
fmax = ="’ 2(0.0353)

Sut = = 264.7 kpsi

(1073) = 82.0 kpsi

Thus, the factor of safety is
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Example 10/ 6
For the end-hook bending at A,

Cy = 2r1/d = 2(0.106)/0.0.035 = 6.057

From Eq. (10-35)
B 4C - Cy — 1 B 4(6.057%) — 6.057 — 1 B

(K)a = = = 1.14

4C1(C1 — 1) 4(6.057)(6.057 — 1)
From Eq. (10-34)
i 16D 4
oA = Fmax _(K)Am + F}

I 16(0.213) 4 3 ,

=5.25]|1.14 107°) = 156.9 k

20,035 T n(o.mﬁl)] (197 s

The yield strength, from Table 10-7, is given by
Sy =0.758,, = 0.75(264.7) = 198.5 kpsi

The factor of safety for end-hook bending at A is then

S 198.5
= = = 1.27

TA 1569 Shigleydos Mechanica.

ng =



Example 10/ 6
For the end-hook in torsion at B, from Eq. (10-37)
Cy =2rp/d = 2(0.089)/0.035 = 5.086

4C;—1  4(5.086) —1

(K)p = = = 1.18
4C, —4  4(5.086) — 4
and the corresponding stress, given by Eq. (10-36), is
il 8(5.25)0.213 ., ,
= (K = 1.18 1077) =784 k
= 700359 ) =

Using Table 10-7 for yield strength, the factor of safety for end-hook torsion at B is

C (Sy)p  0.42647)

— 1.35
B 78.4

np

Yield due to bending of the end hook will occur first.
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Example 10 7

The helical coil extension spring of Ex. 10-6 is subjected to a dynamic loading from
1.5 to 5 Ibf. Estimate the factors of safety using the Gerber failure criterion for (a) coil
fatigue, (b) coil yielding, (¢) end-hook bending fatigue at point A of Fig. 10-6a, and
(d) end-hook torsional fatigue at point B of Fig. 10-6b.

Solution

A number of quantities are the same as in Ex. 10-6: d = 0.035 in, S,;, = 264.7 kpsi,
D = 0213 in, r; = 0.106 in, C = 6.086, Kp = 1.234, (K)4 = 1.14, (K)p = 1.18,

Np = 12.17 turns, Lo = 0.817 in, k = 17.91 1bf/in, F; = 1.19 Ibf, and (7;)uncorr = 15.1
kpsi. Then

Fo = (Fmax — Fain)/2 = (O —1.5)/2 = 1.75 lbt
Fo, = (Fax + Fain)/2 = 0+ 1.5)/2 = 3.25 bt

The strengths from Ex. 10-6 include S,; = 264.7 kpsi, S, = 198.5 kpsi, and S,y =
119.1 kpsi. The ultimate shear strength is estimated from Eq. (10-30) as

Ssu = 0.678,; = 0.67(264.7) = 177.3 kpsi
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(a) Body-coil fatigue:
_ 8KpF,D  8(1.234)1.75(0.213)
T md3 7(0.0353)

Fo 3.25
Ty = —1, = ——=27.3 = 50.7 kpsi
F, 1.75

(107%) = 27.3 kpsi

Ta

Using the Zimmerli data of Eq. (10-28) gives

S 35 :
Se = = = 38.7 kpsi

1 S\ 1 55 \?
s, -\ 177.3

From Table 67, p. 307, the Gerber fatigue criterion for shear is
l S_gu 2 Tﬂ rﬂ'? SSE ’
| = = —1 1 2
(f?f)body 5 (Tm ) S,gf +‘/ =F ( Sm = )

1 /177.3\%27.3 50.7 38.7\?
2 ( 50.7 ) 38.7 +\/ 7 ( 1773 27.3)




Example 101 7

(b) The load-line for the coil body begins at S5, = 7; and has a slope r = . /(t, — 7).
It can be shown that the intersection with the yield line is given by (Ss)y =
[r/(r + DI1(Ssy — 7;). Consequently, t; = (F;/F,)t, = (1.19/1.75)27.3 = 18.6 kpsi,
r=27.3/(50.7 — 18.6) = 0.850, and

0.850 ,
Bl = 0350 1 1(1 19.1 — 18.6) = 46.2 kpsi
Thus,
_ (Sw)y _ 462
(”y)body — = =373 1.69
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(¢) End-hook bending fatigue: using Eqgs. (10-34) and (10-35) gives

16D
.= F, | (K

o |:( )Aﬂd3+nd2]

16(0.213 4
= 1.75] 1. . ) + (1073) = 52.3 kpsi
7(0.035%)  7(0.035?)
Fn 3'255’? 3 =97.1 kpsi
Tm = ED}; = m L. = . PS1

To estimate the tensile endurance limit using the distortion-energy theory,
Se = S5¢/0.577 = 38.7/0.577 = 67.1 kpsi

Using the Gerber criterion for tension gives

1 /S.\?° o, o, S\ 2
= 1t 14 (222
)4 2(am) . +\/ +( Smcra)

| /264.7\% 523 97.1 67.1\2 |
_ 1+ J1+(2 — 1.08
2\ 97.1 ] 67.1 264.7 52.3




Example 10 7
(d) End-hook torsional fatigue: from Eq. (10-36)

8F,D 8(1.75)0.213 =, _
g = (K = 1.18 1077) =26.1k
p =BT 700355 ) -
Fp 3.25 :
(Tm)B = Fa (ra)B — mzﬁl = 48.5 kpSl

Then, again using the Gerber criterion, we obtain
L[S\ © T Sse\
— su ta_ 1 1 ) m_ se
Us)s 2(rm) S +\/ +(Sm ra)

1 /177.3\% 26.1 48.5 38.7\°
— —1 1+ (2 — 1.30
2 ( 485 ) 38.7 +\/ +( 177.3 26.1)
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Helical Coll 7orsion Springs

. Helical coll springs

L05

. \
can be loaded with ‘\:\T{/ =
torsional end loads. |
. Special ends are usel I

to allow a force to be w \[J J
applied at a distance W
from the CO|I aX|S Special ends

- Usually used over a

rod to maintain

alignment and provide
buckling resistance. D/
(a

«

N

il

Double torsion

Fig.10i 8

Y
U
==

Short hook ends

Iilit
||

==

O

Hinge ends

i

Straight offset

Yar\
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=

Straight torsion



End Locations of Torsion Springs

. Terminology for locating relative positions of ends is shown.
. The initial unloaded partial turn in the coll body is given by
N, = B/360°
- The number of body turn¥, will be the full turns plus the initial
partial turn.

N, = integer +

= mnteger + N,

'." i ;_LI
J )

Fig.10i 9




End Locations of Torsion Springs

Commercial tolerances on relative end positions is given in Ta

1019
Table 10-9 Total Coils Tolerance: + Degrees*
End Position Tolerances Upto3 8
for Helical Coil Torsion Over 3-10 10
Springs (for D/d Ratios Over 10-20 15
up to and Including 16) Over 20-30 20
Source: From Design Over 30 25
Handbook, 1987, p. 52.
Courtesy of Associated Spring. *Closer tolerances available on request.
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Stress in Torsion Springs

. The coll of a torsion spring experiences bending stress (despi
name of the spring).

Including a stressorrection factor, the stress in the coil can be

represented by M
g = KT

. The stressorrection factor at inner and outer fibers has been
found analytically for round wire to be
_ACr-C -] AC* +C — |

K; = K, = —" (10-43)
AC(C — 1) A4C(C + 1)

K:1s always larger, giving the highest stress at the inner fiber.

- With a bending moment a¥/ = Fr; for round wire the bending
stress is DFy

wd?

o =Kj;

(10-44)



Spring Rate for Torsion Springs

Angular deflection is commonly expressed in both radians anc
revolutions (turns).

If a term contains revolutions, the variable will be expressed w
prime sign.

The spring rate, if lineatr, is

My My, M,—M,

,I\J: = p—
o] ~ 0 o,—0

(10-45)

where moment/ can be expressed &sor Fr.



Deflection in the Body of Torsion Springs

Use Castiglianods met hod to
body of a torsion spring.

. f M? dx
-~ ] 2EI

Let M = F/ = Fr,and integrate over the length of the banbyl
wire. The force~will deflect through a distance.

9 dU f TDNy g F2r? dx / TDNy F 12 dx
I'g —= — — —
oF 0 dF 2FE] 0 El

Using/ for round wire, and solving fag,
b _ 64FrDN, 64MDN,

d*E  d*E




Deflection in the Ends of Torsion Springs

. The deflection in the ends of the spring must be accounted for

. The angle subtended by the end deflection is obtained from
standard cantilever beam approach.

P s FI? 64M |

=357 = ) = ) (10-46)
| 3EI 3E(wd*/64) 3rnd*E




Deflection in Torsion Springs
. The total angular deflection is obtained by combining the body
deflection and the end deflection.

- With end lengths of, and/,, combining the two deflections
previously obtained gives,

‘= T AE T 32dE T 3id*E . d°E

64M DN, 64M I, 64MI, 64M D ( i’ [ +[»
— — b .
AT

) (10-47)



Equivalent Active Turns

- The equivalent number of active turns, including the effect of t

ends, Is
1+ 1[5

3nD

N(f:Nf}+ [10_48}



Spring Rate in Torsion Springs

. The spring rate, in torgue per radian
L _Fr_M_ _dE
6, 6, 64DN,

. The spring rate, in torque per turn
_ 2nd*E  d'E
- 64DN, 10.2DN,

N

(10-49)

(10-50)

. To compensate for the effect of friction between the coils and
arbor, tests show that ti€.2 should be increased 1®.8.

d*E
[10.8DN,

!

(10-51)

Expressing Eq.1(0i 47) in revolutions, and applying the same
correction for friction, gives the total angular deflection as

g 108MD (i
T Ta*E U7 3ap

(10-52)



Decrease of Inside Diameter

- Atorsion spring under load will experience a change in coll
diameter.

If the spring is over a pin, the inside diameter of the coil must |
be allowed to decrease to the pin diameter.

- The angular deflection of the body of the coil, extracted from t
total deflection in Eq.J0i 52), is

10.8M DN,
0 = '! (10-54)
d*E
. The new helix diametaP’'of a deflected coll is
Ny, D
D = 2~ (10-53)
Np + 6!

. The new inside diameter is

D/ =D —d



Decrease of Inside Diameter

The diametral clearand2between the body coll and the pin of
diameterD, is

NyD
A=D—d—D,=—2"_d-D, (10-55)
Ny + 6]
Solving for/,,
0/(A+d+D,)
N, — ¢ P 10-56
" D-—A-d-D, 1620

This gives the number of body turns necessary to assure a
specified diametral clearance.



Static Strength for Torsion Springs

To obtain normal yield strengths for spring wires loaded in
bending, divide values given for torsion in Tab(# 6 by 0.577
(distortion energy theory). This gives

0.78S,; Music wire and cold-drawn carbon steels
Sy = 1 0.87S,; OQ&T carbon and low-alloy steels (10-57)

0.61S,; Austenitic stainless steel and nonferrous alloys



Fatigue Strength for Torsion Springs

The Sines method and Zimmerli data were only for torsional
stress, so are not applicable.

Lacking better data for endurance limit in bending, use THhle
10, from Associated Spring for torsion springs with repeated Ic
to obtain recommended maximum bending stigss

Table 10-10

Maximum
Recommended Bending
Stresses (Kp Corrected)
for Helical Torsion
Springs in Cyclic
Applications as

Percent of S,

Source: Courtesy of Associated
Spring.

ASTM A228
Fatigue and Type 302 Stainless Steel ASTM A230 and A232
Life, Not Shot- Not Shot-
Cycles Peened Shot-Peened* Peened Shot-Peened*
10° 53 62 55 64
10° 50 60 53 62

This information is based on the following conditions: no surging, springs are in the “as-stress-relieved”
condition.

*Not always possible.
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Fatigue Strength for Torsion Springs

Next, apply the Gerber criterion to obtain the endurance limit.

Note that repeated loading is assumed.

S, /2
5, = i (10-58)

(52

(55)
. This accounts for corrections for size, surface finish, and type
loading, but not for temperature or miscellaneous effects.




Fatigue Factor of Safety for Torsion Springs

- Applying the Gerber criterion as usual from Takil&, with the
slope of the load line=M/M _,

‘252 ESE 2
S, = ",}S“”’ -1+ /1+ (rS ) (10-59)
=g ut
Sa
ny = — (10-60)
Ya

- Or, finding n7 directly using Tabléi 7,

om Se\’
14 1+(gsig_*) (10-61)
iHr a




Example 10/ 8

A stock spring is shown in Fig. 10-10. It is made from 0.072-in-diameter music wire
and has 4% body turns with straight torsion ends. It works over a pin of 0.400 in

diameter. The coil outside diameter is % n.

(a) Find the maximum operating torque and corresponding rotation for static loading.
(b) Estimate the inside coil diameter and pin diametral clearance when the spring is
subjected to the torque in part (a).
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